Based on HYDROLIGHT simulations of more than 2000 reflectance spectra from datasets typical of coastal waters with highly variable optically active constituents as well as on intercomparisons with field measurements, the magnitude of chlorophyll fluorescence was analyzed and parameterized as a function of phytoplankton, CDOM, and suspended inorganic matter concentrations. Using the parameterizations developed, we show that variations in the fluorescence component of water leaving radiance in coastal waters are due more to the variability of attenuation in the water than to the variability of the fluorescence quantum yield, which we estimate to be relatively stable at around 1%. Finally, the ranges of water conditions where fluorescence plays a significant role in the reflectance NIR peak and where it is effectively undetectable are also determined.
Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters.
Retrieval of chlorophyll fluorescence magnitude using Fluorescence Height algorithms in coastal waters is more complicated than in the open ocean because of the strong deviations of elastic reflectance within the fluorescence band from the derived fluorescence baseline. We use results of our recently established relationship between fluorescence magnitude and concentrations of water constituents together with extensive HYDROLIGHT simulations, field and satellite data to analyze the performance and retrieval limitations of MODIS and MERIS FLH algorithms in the variety of coastal waters and to examine improvements for spectral band selection suitable for future sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.