Interfacial mixing and transport are nonequilibrium processes coupling kinetic to macroscopic scales. They occur in fluids, plasmas, and materials over celestial events to atoms. Grasping their fundamentals can advance a broad range of disciplines in science, mathematics, and engineering. This paper focuses on the long-standing classic problem of stability of a phase boundary-a fluid interface that has a mass flow across it. We briefly review the recent advances in theoretical and experimental studies, develop the general theoretical framework directly linking the microscopic interfacial transport to the macroscopic flow fields, discover mechanisms of interface stabilization and destabilization that have not been discussed before for both inertial and accelerated dynamics, and chart perspectives for future research.
Past decades significantly advanced our understanding of Rayleigh–Taylor (RT) mixing. We briefly review recent theoretical results and numerical modelling approaches and compare them with state-of-the-art experiments focusing the reader's attention on qualitative properties of RT mixing.
Homogeneous nucleation is considered as a mechanism for rapid thermal melting of solids irradiated with ultrashort laser pulses. Based on classical nucleation theory we show that for sufficient superheating of the solid phase the dynamics of melting is mainly determined by the electron-lattice equilibration rather than by nucleation kinetics. Therefore, complete melting of the excited material volume should occur within a few picoseconds. This time scale lies between the longer time scale for heterogeneous, surface-nucleated melting and the shorter time scale for possible nonthermal melting mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.