This paper presents a novel hybrid method for Short-Term Load Forecasting (STLF). The system comprises of two Artificial Neural Networks (ANN), assembled in a hierarchical order. The first ANN is a Multilayer Perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor (HLP) for a forecasting day. By using a separate ANN that predicts the integral of the load (ILP), additional information is presented to the actual forecasting ANN (HLP), while keeping its input space relatively small. This property enables online training and adaptation, as new data become available, because of the short training time. Different sizes of training sets have been tested, and the optimum of 30 day sliding time-window has been determined. The system has been verified on recorded data from Serbian electrical utility company. The results demonstrate better efficiency of the proposed method in comparison to non-hybrid methods because it produces better forecasts and yields smaller mean average percentage error (MAPE)
Аутоматика и управљање системима Научна дисциплина, НД: Предвиђање потрошње електричне енергије Предметна одредница/Кqучне речи, ПО: Краткорочно предвиђање потрошње електричне енергије, Линеарна регресија, Вештачке неуронске мреже, генетски алгоритми УДК Чува се, ЧУ: Библиотека Факултета техничких наука, Универзитета у Новом Саду Важна напомена, ВН: Извод, ИЗ: Предмет истраживања ове дисертације везан је за реализацију система за краткорочно предвиђање потрошње електричне енергије у комплексним електроенергетским системима. Представљена је нова метода за избор улазних променљивих предикционог модела, заснована на генетским алгоритмима. Улазне променљиве се бирају тако да омогућавају успешно моделовање процеса потрошње ел. енергије. За имплементацију предикционог модела коришћена је техника вишеструке линеарне регресије, као и вештачке неуронске мреже. Одзив система у фази експлоатације је прецизан и поуздан.
This paper represents comparison of two artificial intelligence based hybrid models for short term load forecasting (STLF). Models have the same input/output architecture and are built on SVM and ANN technologies, respectively. Algorithm consists of two modules connected in a sequence, and output from first module is connected as additional input to second module. First module acts as a predictor of maximal load of forecasting day and second acts as hourly load predictor. Models are part of large STLF solution and in respect to computational and memory limitations simple input space is designed. This architecture enables short training time which is targeted for frequent re-training needs in modern utilities due to frequent change in customer number and behavior.Index Terms-Artificial neural networks, demand forecasting, support vector machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.