Mutations in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase (HPRT) gene of Chinese hamster V-79 cells were examined after exposure ofthe cells to a high cytotoxic dose (0.48 pM; 35% survival) and a low noncytotoxic dose (0.04 ,M; 100% survival) of the ultimate carcinogen (+)-7R,8S-dihydroxy-9S, 10R-epoxy-7,8,9,10-
Earlier studies from our laboratories characterized the mutation profile of the optically active (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-BPDE--the ultimate carcinogenic metabolite of benzo[a]pyrene] in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase (HPRT) gene of Chinese hamster V-79 cells. In the present study, we evaluated the mutation profile of (-)-7S,8R-dihydroxy-9R, 10S-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-BPDE-a weakly carcinogenic or inactive enantiomer] and compared its mutation profile with that of (+)-BPDE. In both diol epoxide enantiomers, the benzylic 7-hydroxy group and epoxide oxygen are trans. The mutation frequency for V-79 cells treated with DMSO vehicle or with a low, non-cytotoxic dose (0.5 microM) or a high cytotoxic dose (2.0 microM) of (-)-BPDE was 1, 25 or 185 8-azaguanine-resistant colonies/10(5) survivors, respectively. Independent 8-azaguanine-resistant clones were isolated, and complementary DNAs were prepared by reverse transcription. The coding region of the HPRT gene was amplified by the polymerase chain reaction and sequenced. Altogether, 92 (-)-BPDE-induced mutant clones were examined. At both doses, base substitutions were the most prevalent mutations observed (present in approximately 7% of the mutant clones), followed by exon deletions (present in approximately 22% of the mutant clones) and frame shift mutations (present in approximately 6% of the mutant clones) in the cDNAs analyzed. At the high cytotoxic dose, 5 out of 36 base substitutions occurred at AT base pairs (14%) and 31 at GC base pairs (86%). At the low, non-cytotoxic dose, 7 out of 34 base substitutions were at AT base pairs (21%) and 27 were at GC base pairs (79%). Although there was a trend towards an increase in the proportion of mutations at AT base pairs when the dose of (-)-BPDE was decreased, this trend was not statistically significant. The data also indicated no dose-dependent differences in the kinds of base substitutions or exon deletions in cDNAs induced by (-)-BPDE. Ninety-one per cent of the (-)-BPDE-induced mutations that occurred at guanine were on the non-transcribed strand of DNA and 9% were on the transcribed strand. In contrast to these results, 50% of the (-)-BPDE-induced mutations that occurred at adenine were on the transcribed strand and 50% on the non-transcribed strand.(ABSTRACT TRUNCATED AT 400 WORDS)
Carcinogenesis involves the accumulation of genetic changes within a single cell. Tumor promotion functions in the initial clonal expansion of an initiated cell but is generally not considered to influence later stages. To investigate whether tumor promotion can influence later stages of carcinogenesis we developed a two-hit 7, 12-dimethylbenz[a]anthracene (D) protocol designed to enrich for keratinocytes that contain at least two D-induced genetic alterations. FVB/N mice were initiated with D and promoted with 12-O-tetradecanoylphorbol-13-acetate (T) or treated with acetone (A) vehicle for 6 weeks. At 7 weeks after the start of promotion, but before visible papilloma development, groups of mice were treated with a second dose of D or A and 1 week later T promotion was resumed. D/T/A/T mice developed 2.8 papillomas/mouse and D/A/D/T mice demonstrated an additive tumor response and developed 5.8 papillomas/mouse. Importantly, D/T/D/T mice developed 12.4 papillomas/mouse, thereby demonstrating a synergistic tumor response compared with D/A/D/T and D/T/A/T mice. D/T/D/T papillomas exhibited increases in suprabasal S phase cells and keratin 13 expression when compared with D/T/A/T papillomas. D/T/D/T mice developed squamous cell carcinomas (SCCs) 10 weeks earlier than D/T/A/T mice and demonstrated a 96% malignancy incidence and 1.71 SCC/mouse compared with D/T/A/T mice, which demonstrated a 28% malignancy incidence and 0.32 SCC/mouse. Greater than 90% of D/T/A/T and D/T/D/T papillomas and SCCs contained mutant Ha-ras, while a normal Ha-ras allele persisted in all cases, indicating that a gene other than the remaining normal allele of Ha-ras was a target gene for the second D hit. These data demonstrate that: (i) promotion between the first and second hits has a profound outcome on carcinogenesis, presumably by increasing the probability that a second hit will occur in a previously initiated cell; (ii) continued promotion after the second hit is required for full expression of malignancy; (iii) the classic initiation-promotion protocol can be extended to a multihit, multistage model.
Earlier studies have shown that the profile of mutations induced by (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (+)-BPDE at the hypoxanthine (guanine) phosphoribosyltransferase (hprt) gene of Chinese hamster V79 cells was dependent on the concentration of (+)-BPDE. In the present study, we examined the effect of the concentration of (+)-BPDE on its mutational profile at the hprt gene in repair-deficient V-H1 cells (a derivative of V79 cells) to explore the role of DNA repair in the dose-dependent mutational profile of (+)-BPDE. Independent hprt mutant clones were isolated after exposing V-H1 cells to dimethylsulfoxide (DMSO) or to low (4-6 nM; 95% cell survival) or high (40-48 nM; 31% cell survival) concentrations of (+)-BPDE in DMSO. The mutation frequencies for the DMSO control and for the low and high concentration groups were 0.1, 2.1 and 32.9 mutant colonies/10(5) survivors, respectively. The profile of mutations at the hprt gene was characterized for 148 (+)-BPDE-induced mutant clones and the results from the present study were compared with those obtained earlier with V79 cells. The data indicated that: (i) V-H1 cells were approximately 9-fold more sensitive to the cytotoxic effects of (+)-BPDE than V79 cells; (ii) the mutation frequency in V-H1 cells was similar to that observed in V79 cells following exposure to similar concentrations of (+)-BPDE; (iii) (+)-BPDE-induced mutations at guanine on the transcribed strand of the hprt gene were common in V-H1 cells but were extraordinarily rare in V79 cells; (iv) (+)-BPDE-induced mutations at adenine on the transcribed strand of the hprt gene were common in both V-H1 and V79 cells; (v) although exposure of V79 cells to different doses of (+)-BPDE resulted in a dose-dependent mutational profile at the hprt gene, this was not observed in V-H1 cells. Our observations indicate a defect in the transcription-coupled repair of (+)-BPDE-DNA adducts in V-H1 cells and that the repair activity deficient in V-H1 cells is essential for the dose-dependent mutational profile observed with (+)-BPDE in V79 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.