Colletotrichum crown rot of strawberry in Florida is caused primarily by Colletotrichum gloeosporioides. To determine potential inoculum sources, isolates of Colletotrichum spp. from strawberry and various noncultivated plants growing in the areas adjacent to strawberry fields were collected from different sites. Species-specific internal transcribed spacer primers for C. gloeosporioides and C. acutatum were used to identify isolates to species. Random amplified polymorphic DNA (RAPD) markers were used to determine genetic relationships among isolates recovered from noncultivated hosts and diseased strawberry plants. Selected isolates also were tested for pathogenicity on strawberry plants in the greenhouse. In all, 39 C. gloeosporioides and 3 C. acutatum isolates were recovered from diseased strawberry crowns, and 52 C. gloeosporioides and 1 C. acutatum isolate were recovered from noncultivated hosts. In crown inoculation tests, 18 of the 52 C. gloeosporioides isolates recovered from noncultivated hosts were pathogenic to strawberry. Phylogenetic analysis using RAPD marker data divided isolates of C. gloeosporioides from noncultivated hosts into two separate clusters. One cluster contained 50 of the 52 isolates and a second cluster contained 2 isolates that were homothallic in culture. Isolates from strawberry were interspersed within the cluster containing the 50 isolates that were recovered from noncultivated hosts. The results are not inconsistent with the hypothesis that C. gloeosporioides isolates obtained from strawberry and noncultivated hosts adjacent to strawberry fields are from the same population and that noncultivated hosts can serve as potential inoculum sources for Colletotrichum crown rot of strawberry.
Two scab diseases are recognized currently on citrus: citrus scab, caused by Elsinoë fawcettii, and sweet orange scab, caused by E. australis. Because the two species cannot be reliably distinguished by morphological or cultural characteristics, host range and molecular methods must be used to identify isolates. Four pathotypes of E. fawcettii and two of E. australis have been described to date based on host range. The host specificity and genetic relationships among 76 isolates from Argentina, Australia, Brazil, Korea, New Zealand, and the United States were investigated. Based on pathogenicity tests on eight differential hosts, 61 isolates were identified as E. fawcettii and 15 as E. australis. Of 61 isolates of E. fawcettii, 24 isolates were identified as the Florida broad host range (FBHR) pathotype, 7 as the Florida narrow host range (FNHR) pathotype, 10 as the Tryon's pathotype, and 3 as the "Lemon" pathotype. Two new pathotypes, the "Jingeul" and the satsuma, rough lemon, grape-fruit, clementine (SRGC), are described, and four isolates did not fit into any of the known pathotypes of E. fawcettii. Of the 15 isolates of E. australis from Argentina and Brazil, 9 belonged to the sweet orange pathotype and 6 from Korea to the natsudaidai pathotype. E. fawcettii and E. australis were clearly distinguishable among groups by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) assays and the E. fawcettii group was divided into three subgroups, A-1, A-2, and A-3. The A-1 group was composed of the FBHR, FNHR, and SRGC pathotypes; some Lemon pathotypes; and the uncertain isolates. The A-2 subgroup included all of the Tryon's pathotype isolates and one of the three Lemon pathotype isolates and the A-3 group contained the Jingeul pathotype isolates. E. australis was differentiated into two groups: B-1, the natsudaidai pathotype isolates, and B-2, the sweet orange pathotype isolates. Isolates of E. fawcettii and E. australis were clearly distinguishable by sequence analysis of the internal transcribed spacer (ITS) region and the translation elongation factor 1 alpha (TEF) gene. There were also fixed nucleotide differences in the ITS and TEF genes that distinguished subgroups separated by RAPD-PCR within species. We confirmed two species of Elsinoë, two pathotypes of E. australis, and at least six pathotypes of E. fawcettii and described their distribution in the countries included in this study.
Colletotrichum acutatum causes two diseases of citrus, postbloom fruit drop (PFD) and Key lime anthracnose (KLA). PFD is a disease restricted to flowers of sweet orange and most other citrus, and symptoms include petal necrosis, abscission of developing fruit, and the formation of persistent calyces. KLA is a disease of foliage, flowers, and fruits of Key lime only, and symptoms include necrotic lesions on leaves, fruits, twigs, flowers, and blight of entire shoots. The internal transcribed spacers 1 and 2 and the gene encoding the 5.8S ribosomal RNA subunit within the nuclear ribosomal cluster (ITS) and intron 2 of the glyceraldehyde-3-phosphate dehydrogenase gene (G3PD) were sequenced for isolates from PFD-affected sweet orange and KLA-affected Key limes collected in the United States (Florida), Brazil (São Paulo), Mexico, Belize, Costa Rica, and the Dominican Republic to determine if there are consistent genetic differences between PFD and KLA isolates over the geographic area where these diseases occur. Based on the sequence data, isolates clustered into two well-supported clades with little or no sequence variation among isolates within clades. One clade (PFD clade) contained PFD isolates from all countries sampled plus a few isolates from flowers of Key lime in Brazil. The other clade (KLA clade) contained KLA isolates from Key lime foliage from all countries sampled and one isolate from flowers of sweet orange in Mexico. In greenhouse inoculations with PFD and KLA isolates from Florida, isolates from both clades produced PFD symptoms on Orlando tangelo flowers, but KLA-clade isolates produced significantly less severe symptoms. PFD-clade isolates were not pathogenic to Key lime foliage, confirming previous studies. The differentiation of PFD and KLA isolates into two well-supported clades and the pathogenicity data indicate that PFD and KLA are caused by distinct phylogenetic lineages of C. acutatum that are also biologically distinct. PFD is a recently described disease (first reported in 1979) relative to KLA (first reported in 1912) and it had been proposed that strains causing PFD evolved from strains causing KLA eventually losing pathogenicity to Key lime foliage. We reject the hypothesis that PFD strains have diverged from KLA strains recently based on estimated divergence times of haplotypes and it appears that PFD and KLA strains have been dispersed throughout the Americas independently in association with each host.
We hypothesized that individual differences in autonomic responses to psychological, physiological, or environmental stresses are inherited, and exaggerated autonomic responsiveness may represent an intermediate phenotype that can contribute to the development of essential hypertension in humans over time. alpha(2)-Adrenergic receptors (alpha(2)-ARs), encoded by a gene on chromosome 10, are found in the central nervous system and also mediate release of norepinephrine from the presynaptic nerve terminals of the peripheral sympathetic nervous system and the exocytosis of epinephrine from the adrenal medulla. We postulated that, because this receptor mediates central and peripheral autonomic responsiveness to stress, genetic mutations in the gene encoding this receptor may explain contrasting activity of the autonomic nervous system among individuals. The restriction enzyme Dra I identifies a polymorphic site in the 3'-transcribed, but not translated, portion of the gene encoding the chromosome 10 alpha(2)-AR. Southern blotting of genomic DNA with a cDNA probe after restriction enzyme digestion results in fragments that are either 6.7 kb or 6.3 kb in size. Transfection studies of these two genotypes resulted in contrasting expression of a reporter gene, and it is suggested from these findings that this is a functional polymorphism. In a study of 194 healthy subjects, we measured autonomic responses to provocative motion, a fall in blood pressure induced by decreasing venous return and cardiac output, or exercise. Specifically, we measured reactions to 1) Coriolis stress, a strong stimulus that induces motion sickness in man; 2) heart rate responses to the fall in blood pressure induced by the application of graded lower body negative pressure; and 3) exercise-induced sweat secretion. In all of these paradigms of stress, subjective and objective evidence of increased autonomic responsiveness was found in those individuals harboring the 6.3-kb allele. Specifically, volunteers with the 6.3-kb allele had greater signs and symptoms of motion sickness mediated by the autonomic nervous system after off-axis rotation at increasing velocity (number of head movements a subject could complete during rotation before emesis +/- SE: 295 +/- 18 vs. 365 +/- 11; P = 0.001). They also had greater increases in heart rate in responses to the lower body negative pressure-induced fall in blood pressure (increase in heart rate +/- SE: 3.0 +/- 0.4 vs. 1.8 +/- 0.3; P = 0.012), and the 6.3-kb group had higher sweat sodium concentrations during exercise (mean sweat sodium concentration in meq/l over 30 min of exercise +/- SE: 43.2 +/- 7.1 vs. 27.6 +/- 3.4; P < 0.05). This single-nucleotide polymorphism may contribute to contrasting individual differences in autonomic responsiveness among healthy individuals.
Isolates of Colletotrichum spp. from diseased strawberry fruit and crowns were evaluated to determine their genetic diversity and the etiology of the diseases. Isolates were identified to species using polymerase chain reaction primers for a ribosomal internal transcribed spacer region and their pathogenicity was evaluated in bioassays. Isolates were scored for variation at 40 putative genetic loci with random amplified polymorphic DNA and microsatellite markers. Only C. acutatum was recovered from diseased fruit. Nearly all isolates from crowns were C. gloeosporioides. In crown bioassays, only isolates of C. gloeosporioides from strawberry caused collapse and death of plants. A dendrogram generated from the genetic analysis identified several primary lineages. One lineage included isolates of C. acutatum from fruit and was characterized by low diversity. Another lineage included isolates of C. gloeosporioides from crowns and was highly polymorphic. The isolates from strawberry formed distinctive clusters separate from citrus isolates. Evaluation of linkage disequilibrium among polymorphic loci in isolates of C. gloeosporioides from crowns revealed a low level of disequilibrium as would be expected in sexually recombining populations. These results suggest that epidemics of crown rot are caused by Glomerella cingulata (anamorph C. gloeosporioides) and that epidemics of fruit rot are caused by C. acutatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.