Isolates of Colletotrichum spp. from diseased strawberry fruit and crowns were evaluated to determine their genetic diversity and the etiology of the diseases. Isolates were identified to species using polymerase chain reaction primers for a ribosomal internal transcribed spacer region and their pathogenicity was evaluated in bioassays. Isolates were scored for variation at 40 putative genetic loci with random amplified polymorphic DNA and microsatellite markers. Only C. acutatum was recovered from diseased fruit. Nearly all isolates from crowns were C. gloeosporioides. In crown bioassays, only isolates of C. gloeosporioides from strawberry caused collapse and death of plants. A dendrogram generated from the genetic analysis identified several primary lineages. One lineage included isolates of C. acutatum from fruit and was characterized by low diversity. Another lineage included isolates of C. gloeosporioides from crowns and was highly polymorphic. The isolates from strawberry formed distinctive clusters separate from citrus isolates. Evaluation of linkage disequilibrium among polymorphic loci in isolates of C. gloeosporioides from crowns revealed a low level of disequilibrium as would be expected in sexually recombining populations. These results suggest that epidemics of crown rot are caused by Glomerella cingulata (anamorph C. gloeosporioides) and that epidemics of fruit rot are caused by C. acutatum.
The oversummer survival of Colletotrichum gloeosporioides in strawberry crown tissue under field conditions was investigated in 1998 and 1999. Strawberry crowns infected naturally with C. gloeosporioides were placed inside cloth bags containing field soil, buried in the field at 5 or 13 cm, then recovered over 6 months of each year. The recovered crowns were plated onto a Colletotrichum spp. semiselective medium and speciated by colony, spore morphology, and molecular markers with species-specific DNA primers. Pathogenicity of selected isolates was confirmed by greenhouse bioassays on strawberry. Of the 428 isolates of Colletotrichum spp. recovered from buried crowns, 96% were C. gloeosporioides and 4% Colletotrichum acutatum. Following an initial increase in the detection of the fungus, survival of C. gloeosporioides was stable for 2 to 3 weeks, then declined. No Colletotrichum spp. were detected after burial for 56 days in 1998 and 98 days in 1999. Because the time between crop seasons is typically more than 170 days, these data support the hypothesis that inoculum of C. gloeosporioides does not survive in buried plant debris between seasons in Florida and, therefore, oversummering crop debris does not contribute inoculum for epidemics of Colletotrichum crown rot in Florida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.