Using PCR with a set of specific oligonucleotide primers to detect cryI-type genes, we were able to screen the cry-type genes of 225 BaciUlus thuringiensis soil isolates from Taiwan without much cost in time or labor. Some combinations of cry genes (the cry-type profile) in a single isolate were unique. We identified five distinct profiles of crystal genes from the B. thuringiensis soil isolates from Taiwan. The cry genes included cryL4(a), cryIA(b), crylA(c), cryIC, cryID, and cryIV. Interestingly, 501 B. thuringiensis isolates (93.5% of the total number that we identified) were isolated from areas at high altitudes. The profiles of cry-type genes were distinct in all isolation areas. The distribution of cry-type genes of our isolates therefore depended on geography. Using PCR footprinting to detect cryIC-type genes, we identified two distinct cryIC footprints from some of our isolates, indicating that these isolates may contain novel cryIC-type genes. B. thuringiensis isolates containing cryIA(a)-, cryL4(b)-, and cryL4(c)-type genes exhibited much greater activity against Plutella xylostella than did other isolates, indicating that multiple cry-type genes may be used as markers for the prediction of insecticidal activities.
The recent spread of the plant pathogenic bacterium Xylclla fastidiosa Wells et al. by an invasive vector species, Homalodisca coagulata Say, in southern California has resulted in new epidemics of Pierce's disease of grapevine. Our goal is to develop an efficient method to detect low titers of X. fastidiosa in H. coagulata that is amenable to large sample sizes for epidemiological studies. Detection of the plant pathogenic bacterium X. fastidiosa in its insect vector is complicated by low titers of bacteria, difficulty in releasing it from the insect mouthparts and foregut, and the presence of substances in the insect that inhibit polymerase chain reaction (PCr). To select the optimal protocol for DNA extraction to be used with PCR, we compared three standard methods and 11 commercially available kits for relative efficiency of X. fastidiosa DNA extraction in the presence of insect tissue. All of the protocols tested were proficient at extracting DNA from pure bacterial culture (1 x 10(5) cells), and all but one protocol successfully extracted sufficient bacterial DNA in the presence of insect tissue. Three DNA extraction techniques, immunomagnetic separation, the DNeasy Tissue kit (Qiagen, Hercules, CA), and Genomic DNA Purification kit (Fermentus, Hanover, MD), were compared more closely using a dilution series of X. fastidiosa (5000-0 cells) with and without insect tissue present. The DNeasy Tissue kit was the best kit tested, allowing detection of 5 x 10(3) X. fastidiosa cells with an insect head background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.