In this fundamental work, higher derivatives of the standard Nield-Kuznetsov function of the first kind, and the polynomials arising from this function and Airy’s functions, are derived and discussed. This work provides background theoretical material and computational procedures for the arising polynomials and the higher derivatives of the recently introduced Nield-Kuznetsov function, which has filled a gap that existed in the literature since the nineteenth century. The ease by which the inhomogeneous Airy’s equation can now be solved is an advantage offered by the Nield-Kuznetsov functions. The current analysis might prove to be invaluable in the study of inhomogeneous Schrodinger, Tricomi, and Spark ordinary differential equations.
Inhomogeneous Airy’s and Generalized Airy’s equations with initial and boundary date are considered in this work. Solutions are obtained for constant and variable forcing functions, and general solutions are expressed in terms of Standard and Generalized Nield-Kuznetsov functions of the first- and second-kinds. Series representations of these functions and their efficient computation methodologies are presented with examples.
In this article, we discuss a class of functions known as the Nield-Kuznetsov functions, introduced over the past decade. These functions arise in the solutions to inhomogeneous Airy’s and Weber’s equations. Derivations of these functions are provided, together with their methods of computations
In this work, particular and general solutions to Airy’s inhomogeneous equation are obtained when the forcing function is one of Airy’s functions of the first and second kind, and the standard Nield-Kuznetsov function of the first kind. Particular solutions give rise to special integrals that involve products of Airy’s and Nield-Kuznetsov functions. Evaluation of the resulting integrals is facilitated by expressing their integrands in asymptotic series. Corresponding expressions for the Nield-Kuznetsov function of the second kind are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.