Research Objective: Advancing scientific understanding of the transportation, fate, and remediation of subsurface contamination sources and plumes -The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR).
The stability of volatile organic compounds in environmental water samples has been studied, particularly with respect to the establishment of preanalytical holding times. Methods have been developed for the preparation of standard samples containing known concentrations of volatile organics. Three water samples were used: distilled water, surface water, and groundwater. Samples were stored at both room temperature and under refrigeration. Data were collected over a 365-day period by gas chromatography /mass spectrometry. In water samples containing low chloride content (distilled water), rapid dehydrohalogenation of tetrachloroethane to trichloroethylene occurred. Such degradation was also evident in the surface water and groundwater samples stored at room temperature. A less rapid conversion of trichloroethane to dichloroethylene occurred in distilled water samples stored at 25 °C. Reduced concentrations of aromatic volatiles were observed in both surface and groundwater matrices after 28 days. Loss of carbon tetrachloride was also apparent in surface water samples stored at room temperature. Subsequently, experiments were conducted to determine the value of reduced pH in sample preservation. It was shown that acidification with hydrochloric acid effectively prevented degradation and allowed indefinite storage. However, sampling and analytical considerations make the use of HC1 impractical. Therefore, a study was carried out using sodium bisulfate and ascorbic acid as preservatives. Both substances effectively preserved the samples, but sodium bisulfate proved to have several advantages over ascorbic acid. Samples preserved with either acid were stable over the 112-day experimental period.The implication is that with preservation the maximum holding times for such samples will be limited only by the need for sample turnaround.
BackgroundThe mission of the BioEnergy Science Center (BESC) was to enable efficient lignocellulosic-based biofuel production. One BESC goal was to decrease poplar and switchgrass biomass recalcitrance to biofuel conversion while not affecting plant growth. A transformation pipeline (TP), to express transgenes or transgene fragments (constructs) in these feedstocks with the goal of understanding and decreasing recalcitrance, was considered essential for this goal. Centralized data storage for access by BESC members and later the public also was essential.ResultsA BESC committee was established to codify procedures to evaluate and accept genes into the TP. A laboratory information management system (LIMS) was organized to catalog constructs, plant lines and results from their analyses. One hundred twenty-eight constructs were accepted into the TP for expression in switchgrass in the first 5 years of BESC. Here we provide information on 53 of these constructs and the BESC TP process. Eleven of the constructs could not be cloned into an expression vector for transformation. Of the remaining constructs, 22 modified expression of the gene target. Transgenic lines representing some constructs displayed decreased recalcitrance in the field and publications describing these results are tabulated here. Transcript levels of target genes and detailed wall analyses from transgenic lines expressing six additional tabulated constructs aimed toward modifying expression of genes associated with wall structure (xyloglucan and lignin components) are provided. Altered expression of xyloglucan endotransglucosylase/hydrolases did not modify lignin content in transgenic plants. Simultaneous silencing of two hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferases was necessary to decrease G and S lignin monomer and total lignin contents, but this reduced plant growth.ConclusionsA TP to produce plants with decreased recalcitrance and a LIMS for data compilation from these plants were created. While many genes accepted into the TP resulted in transgenic switchgrass without modified lignin or biomass content, a group of genes with potential to improve lignocellulosic biofuel yields was identified. Results from transgenic lines targeting xyloglucan and lignin structure provide examples of the types of information available on switchgrass lines produced within BESC. This report supplies useful information when developing coordinated, large-scale, multi-institutional reverse genetic pipelines to improve crop traits.Electronic supplementary materialThe online version of this article (10.1186/s13068-017-0991-x) contains supplementary material, which is available to authorized users.
This report was prepared as an account of work sponsored by an agency of the United States Government.Neither the United States Governmentnor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibilityfor the accuracy, completeness, or usefulnessof any information,apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,or otherwise,does not necessarily constitute or imply its endorsement,recommendation,or favoringby the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Governmentor any agency thereof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.