Polyurethane (PU)/Dodecyl sulphate intercalated layered double hydroxide (DS-LDH) nanocomposites were successfully synthesized from PU prepolymer and polyol TG (mixtures of glycerol and trimethylolpropane) for the first time. Formation of partially exfoliated structures of PU/DS-LDH nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Analysis of tensile properties showed significant improvements in tensile strength (TS) and elongation at break (EB) of about 407% and 83% for PU/DS-LDH (3 wt%) nanocomposite. The observed excellent concurrent improvement in TS and EB is attributed to the relatively better reinforcing effect of partially exfoliated DS-LDH layers in PU making the present investigation most noteworthy. In addition, gradual improvement in thermal stability and limiting oxygen index (LOI) with increasing DS-LDH loading makes these nanocomposites versatile and hence suitable for many critical applications.
This paper describes the mechanical and thermal characterisation of cross‐linked glycidyl azide polymer (GAP) and GAP–hydroxyl terminated polybutadiene (HTPB) networks. Cross‐linked GAP and GAP–HTPB networks were prepared by reacting GAP diol and GAP–HTPB diol mixture with different diisocyanates. The physical and mechanical characteristics were found to be influenced by the type of isocyanate curing agents, [NCO]/[OH] equivalent ratios and concentration of GAP. For all the three types of curing agents, GAP–HTPB blends of 50 : 50 to 30 : 70 ratios show higher mechanical strength over the virgin networks of GAP or HTPB. Thermal decomposition of cross‐linked GAP–HTPB networks was evaluated by thermogravimetric analysis (TGA). The kinetic parameters for the decomposition of GAP–HTPB blends were found to be dependant on the concentration of GAP and HTPB in the blend. The cross‐linked GAP–HTPB blends were subjected to dynamic mechanical analysis (DMA). The glass transition characteristics of the blends were evaluated by DMA and it was found that blends prepared with GAP content up to 30% showed single transition in the loss tangent trace indicating no phase separation in the cured network.
Reactions between hydroxyl-terminated glycidyl azide polymer (GAP) and different isocyanate curatives such as toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), and methylene diicyclohexyl isocyanate (MDCI) at various temperatures viz. 30, 40, 50, and 608C were followed by Fourier transform infra red spectroscopy. The reactions were found to follow second-order kinetics. With TDI and IPDI at 308C, a two-stage reaction was observed. For GAP-TDI system, the second stage was slower than the first while for GAP-IPDI system, the second stage was faster than the first indicating dominance of autocatalytic effect. The stage separation occurred due to the difference in reactivity of the isocyanate groups and was found to narrow down with increase in temperature. The viscosity build up due to the curing reaction was followed for GAP-TDI system for comparison. The stage separation was evident in the viscosity build up also. Rheokinetic analysis done based on data generated showed a linear correlation between viscosity build up and fractional conversion. The kinetic and activation parameters evaluated from the data showed the relative difference in reactivity of the three diisocyanates with GAP. Both the approaches suggested that the reactivity of the isocyanates employed for the present study could be arranged as TDI > IPDI ) MDCI.
Glycidyl azide polymer (GAP) has been evaluated for use as binder for solid propellants. The effects of various parameters like cross-linking conditions, concentration of crosslinker, and the ratio of isocyanate to hydroxyl functional groups (NCO/OH ratio) on the mechanical properties were studied in detail. It was observed that the type of curing agent and the NCO/OH ratio have a strong influence on the gum-stock properties. Similar impact was seen for cross-linker concentration also. The swelling characteristics of the cross-linked binder prepared with different NCO/OH ratios were evaluated with toluene and tetrahydrofuran (THF). The polarity and the solubility parameter of the solvents were found to influence the swelling of GAP. The NCO/OH ratio and cross-linker concentration of the polymer were also found to affect the swelling characteristics. The sol fraction determined for the polymer was found to follow a similar pattern. The cross-link density and average molecular weight between crosslinks (Mc) were determined from the swelling studies and also from the stress-strain relationship. The Mc values were found to be influenced by the NCO/ OH ratio. Finally, the Mc values determined from the swelling data were correlated to the gum-stock properties, and the model parameters were estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.