The two-dimensional incompressible laminar viscous flow of a conducting fluid past a square cylinder placed centrally in a channel subjected to an imposed transverse magnetic field has been simulated to study the effect of a magnetic field on vortex shedding from a bluff body at different Reynolds numbers varying from 50 to 250. The present staggered grid finite difference simulation shows that for a steady flow the separated zone behind the cylinder is reduced as the magnetic field strength is increased. For flows in the periodic vortex shedding and unsteady wake regime an imposed transverse magnetic field is found to have a considerable effect on the flow characteristics with marginal increase in Strouhal number and a marked drop in the unsteady lift amplitude indicating a reduction in the strength of the shed vortices. It has further been observed, that it is possible to completely eliminate the periodic vortex shedding at the higher Reynolds numbers and to establish a steady flow if a sufficiently strong magnetic field is imposed. The necessary strength of the magnetic field, however, depends on the flow Reynolds number and increases with the increase in Reynolds number. This paper describes the algorithm in detail and presents important results that show the effect of the magnetic field on the separated wake and on the periodic vortex shedding process.
This work involves numerical simulations based on finite volume method to study the effects of different factors on the aerodynamic drag on a vacuum tube train running at subsonic and transonic speeds in a partially vacuum tunnel. Investigation includes the study of the effects of the shapes of head, tail, vacuum pressure and also blockage ratio of the tunnel on aerodynamic drag on a high speed train. The simulation is performed by using fluent software. Two dimensional, axisymmetric, compressible Navier-Stokes equations were solved by using k-ε turbulent modeling. Five different blockage ratios at five different speeds of the train have been considered. The simulated results show that, the blockage ratio and different working vacuum pressure significantly affects the aerodynamic drag of the train in a tunnel. Investigations with respect to different shapes of the head as well as that of the tail indicate the optimum shape for minimum drag.
Steady Navier-Stokes (N-S) equations for two dimensional flow using standard k-ε turbulence modeling was solved with the help of FLUENT 14 software to simulate the flow around a train in an evacuated tunnel. Suction mechanism at the rear end was applied to study the additional reduction effect of the aerodynamic drag on the vehicle. It was observed that coefficient of drag was decreasing with the increase of suction speed. Similar investigations have also been performed by taking different shapes of the head and tail of the vehicle at the same blockage ratio under different pressures of evacuation. It was found that with the decrease of ambient pressure the aerodynamic drag reduced for any geometrical shape. Investigations have also been performed on the wake structure with respect to wake size.
To get the low temperature transformation product of austenite, study of cooling behavior of coil is essential. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.