There have been comparatively few investigations reported of radiation effects in zeolites, although it is known that these materials may be modified substantially by exposure to ionizing radiation. Thus, by exposure to γ-rays or high-energy particles, the charge states of atoms may be changed so to create, and accumulate, lattice point defects, and to form structurally disordered regions. Such a technique may permit the creation, in a controlled fashion, of additionally useful properties of the material while preserving its essential stoichiometry and structure. Accordingly, we present an application, in which the cation-exchange capacity of a natural zeolite (clinoptilolite) is substantially enhanced, for the treatment/decontamination of water contaminated with radionuclides e.g. 134Cs, 137Cs and 90Sr, by its exposure to high-energy (8 MeV) electrons, and to different total doses.
Abstract:Infrared (IR) absorption and luminescence in chemically and radiationmodified natural Armenian Zeolite (clinoptilolite) samples have been studied. The luminescence was studied in 390-450 nm and 620-710 nm wavelength bands, and the IR measurements were carried out in the 400-5400 cm −1 range. It is shown that the luminescence intensity depends on the content of pure clinoptilolite in the samples and, probably on the distribution of "passive" luminescence centers over Si and Al sites that became "active" under radiation or chemical treatment. The samples of electron irradiated clinoptilolite have higher luminescence intensity than the chemically and thermally treated ones. A decrease in the intensity of IR absorption bands at 3550 cm −1 and 3650 cm −1 was found after irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.