Hypoxia is well known to increase the free radical generation in the body, leading to oxidative stress. In the present study, we have determined whether the increased oxidative stress further upregulates the nuclear transcription factor (NFkB) in the development of pulmonary edema. The rats were exposed to hypobaric hypoxia at 7620 m (280 mm Hg) for different durations, that is, 3 hrs, 6 hrs, 12 hrs, and 24 hrs at 25+/-1 degrees C. The results revealed that exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, with time up to 6 hrs (256.38+/-61 rfu/g) as compared with control (143.63+/-60.1 rfu/g). There was a significant increase in reactive oxygen species, lipid peroxidation, and superoxide dismutase levels, with a concurrent decrease in lung glutathione peroxidase activity. There was 13-fold increase in the expression of NFkB level in nuclear fraction of lung homogenates of hypoxic animals over control rats. The DNA binding activity of NFkB was found to be increased significantly (P<0.001) in the lungs of rats exposed to hypoxia as compared with control. Further, we observed a significant increase in proinflammatory cytokines such as IL-1, IL-6, and TNF-alpha with concomitant upregulation of cell adhesion molecules such as ICAM-I, VCAM-I, and P-selectin in the lung of rats exposed to hypoxia as compared with control. Interestingly, pretreatment of animals with curcumin (NFkB blocker) attenuated hypoxia-induced vascular leakage in lungs with concomitant reduction of NFkB levels. The present study therefore reveals the possible involvement of NFkB in the development of pulmonary edema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.