Organic matter (OM) is a ubiquitous constituent of natural waters quantifiable at very low levels using fluorescence spectroscopy. This technique has recognized potential in a range of applications where the ability to monitor water quality in real time is desirable, such as in water treatment systems. This study used PARAFAC to characterize a large (n=1479) and diverse excitation emission matrix (EEM) data set from six recycled water treatment plants in Australia, for which sources of variability included geography, season, treatment processes, pH and fluorometer settings. Five components were identified independently in four or more plants, none of which were generated during the treatment process nor were typically entirely removed. PARAFAC scores could be obtained from EEMs by simple regression. The results have important implications for online monitoring of OM fluorescence in treatment plants, affecting choices regarding experimental design, instrumentation and the optimal wavelengths for tracking fluorescent organic matter through the treatment process. While the multimodel comparisons provide a compelling demonstration of PARAFAC's ability to distill chemical information from EEMs, deficiencies identified through this process have broad implications for interpreting and reusing (D)OM-PARAFAC models.
Phase pure, stable nanocrystalline brushite particles with average diameter in the range of 23–87 nm were obtained by the reverse microemulsion technique employing a mixture of surfactants (Aliquat 336 & Tween 80) as template directing agents, and calcium nitrate tetrahydrate and biammonium hydrogen phosphate as precursors. Particle sizes and morphologies were tuned by adjusting the reaction parameters, precursor concentration and temperature. FTIR, TEM, and XRD were used to characterize morphological changes of as synthesized nanoparticles. FTIR and XRD analyses confirmed the formation of brushite nanoparticles. Variations in the reaction temperature resulted in changes in the particle morphology and distribution. At high temperatures (60°C), the sample exhibited high monodispersity and spherical morphology with the average grain size of 42 nm. At low temperatures (6°C), nanoflakes were formed. The results suggest that a reverse microemulsion system provides facile media for control of the phase and morphology of nanoscale calcium phosphate biominerals. A mechanism providing an insight into the formation of brushite particles has also been proposed.
Carbonic anhydrase catalyzes reversible hydration of carbon dioxide and dehydration of bicarbonate. In this article we report that the rapid exchange catalyzed by carbonic anhydrase causes a large magnetization (saturation) transfer effect on the 13 C signal of bicarbonate at 160.7 ppm in vivo when the resonance of the undetectable carbon dioxide at 125.0 ppm is irradiated with RF pulses. In isoflurane-anesthetized adult rat brain the unidirectional, pseudo first-order rate constant of this exchange in the dehydration direction was determined to be 0.47 ؎ 0.05 sec ؊1 following intravenous infusion of uniformly 13 C-labeled glucose for labeling bicarbonate. Intralateral ventricular administration of the highly specific carbonic anhydrase inhibitor acetazolamide, which is a drug used for treating glaucoma and epilepsy, was also shown to significantly attenuate the observed 13 C magnetization transfer effect of the carbon dioxide-bicarbonate exchange in the rat brain. Magn Reson Med 59:492-498, 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.