Past experimental studies show that tire–pavement friction values are related to conditions surrounding the tire such as pavement temperature, ambient temperature, contained air temperature, and surface characteristics of the pavement. For measurements taken in different temperature conditions, road agencies generally apply correction factors. These correction factors are based primarily on experience and previous field test measurements that have very limited transferability under different conditions. This paper studies frictional behavior of test tires under different surrounding temperature conditions using finite element analysis. The scope of this research is to analyze the effect of pavement temperature, ambient temperature, and contained air temperature on frictional measurements. Finite element analysis of fully and partially skidding tires over different asphalt pavement surfaces, namely, porous asphalt, ultrathin surface, and stone mastic asphalt, is considered. Observation showed that a higher pavement temperature, ambient temperature, and contained air temperature resulted in a lower hysteretic friction for a given pavement surface and a given tire slip ratio. In contrast, a lower tire slip ratio and a pavement with higher macrotexture resulted in higher friction. This study highlights that a critical combination of these factors will decrease friction significantly.
Tire–road interaction addresses safety with respect to braking friction and energy efficiency in the context of rolling resistance. These phenomena are coherent, but their engineering solutions can be contradictory. For example, highly skid-resistant surfaces may not be ideal for fuel economy, but surfaces with low rolling resistance may be prone to skidding. Several experimental and numerical studies have investigated the individual phenomena, but insufficient attention has been paid to studying them coherently. The present study computed braking friction and rolling resistance for various operating parameters and their coherent response for each parameter with the use of a thermomechanical contact algorithm. Micromechanical finite element simulations of a rolling or braking pneumatic tire against selected asphalt concrete surfaces were performed for various operating conditions, such as tire load, inflation pressure, speed, and ambient air and pavement temperatures. The coefficients of braking friction and rolling resistance were found to decrease with the inflation pressure and the temperature and to increase with the wheel load. The braking friction coefficient was found to decrease with the speed, in contrast to the rolling resistance coefficient, which increases with the same parameter. A full-skidding tire registered lower braking friction than a 20% slipping tire. Also, an asphalt surface with higher macrotexture offered higher braking friction and higher rolling resistance, and vice versa.
Field experience shows that most road accidents that occur during turning maneuvers are caused by the loss of vehicle control. The loss of vehicle control is often related to a lack of sufficient friction between the tire and the pavement surface. In experiments and analytical studies, the overall antiskidding performance of a pneumatic tire has been observed to be affected by operating conditions, road texture, and surrounding temperatures. Interactions of these parameters create a complex relationship between their combined effect and the tire's ability to combat skidding. One way to analyze the cornering maneuvers of a vehicle is by means of a validated finite element tool that can carry both the tire and the pavement properties. Few computational studies have been conducted to study the cornering performance of a rolling pneumatic tire, and none of these studies included the role of pavement surface morphologies in their analysis. In this study, a thermomechanical framework was used to analyze the influence of temperature on cornering friction. The cornering friction coefficient was found to decrease with an increase in the loads and the speeds. The cornering friction coefficient was found to increase with an increase in inflation pressure, sideslip angle, and pavement surface texture depth. The proposed study contributes to an understanding of the cornering performance of passenger car tires.
Good pavement macrotexture has a direct influence on vehicle safety during wet weather conditions by improving vehicle traction and braking ability. Apart from the macrotexture, several other factors, such as environmental, tire, and pavement-related characteristics, affect the wet friction. Most experimental studies had a limited scope of reusability as soon as there was a change in any of the other factors. In recent years, the development of powerful finite element tools has made it possible to simulate complex wet tire–pavement interaction as close as possible to the actual field conditions. However, to the best of the authors’ knowledge, none of the past analytical and numerical studies were able to include the actual pavement surface texture in their analysis. This paper describes an approach to study the effect of actual surface morphologies of asphalt pavements on the wet friction coefficient by using the finite element method. Asphalt surface morphologies representative of open-graded mix to close-graded mix were used in the finite element analysis. The finite element model was duly calibrated with the field investigations conducted with state-of-the-art field equipment. The extreme loss of wet friction, which ultimately led to the risk of hydroplaning, was also studied. The analyses were performed for two water film thicknesses, two tread patterns, and two tire slip ratios. The results from the current study can be used as safety indicators of in-service asphalt pavements under wet and flooded conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.