A study of the epidemiology of malaria transmission was undertaken in 13 tribal villages located in forest and plain areas of Sundargarh District of Orissa state, India, from January 2001 to December 2003. In forest areas, intense transmission of malaria is attributed to the highly anthropophagic vector Anopheles fluviatilis sibling species S and is complemented by A. culicifacies sibling species C. In plain areas, A. culicifacies sibling species C is responsible for malaria transmission. The entomological inoculation rate in the forest and plain areas was 0.311 and 0.014 infective bites/person/night, respectively, during 2003. Malaria transmission is perennial both in forest and plain areas but is markedly low in the plain area compared with the forest area. Plasmodium falciparum accounted for 85.0% of the total malaria cases during the study period. In forest and plain areas, the number of P. falciparum cases per 1000 population per year was 284.1 and 31.2, respectively, whereas the parasite rate was 14.0% and 1.7%, respectively. In forest areas, clinical malaria occurs more frequently in children aged 0-5 years and declines gradually with increasing age. The study showed that villages in forest and plain areas separated by short geographical distances have distinct epidemiology of malaria transmission.
Abstract. Eight Indian laboratory stocks of Anopheles stephensi Liston could be grouped into three categories with, respectively, 14–22, 12–17 and 9–15 ridges on the egg‐floats. The mode number of ridges among the eggs laid by individual females in these stocks was 16–19,13‐16 and 10–14, respectively. The category with the highest egg‐float ridge number corresponded with the type‐form and the lowest with var. mysorensis Sweet and Rao; the new egg‐float category with ridge number modes of thirteen to sixteen was designated as ‘intermediate’. All three forms, i.e. type‐form, intermediate and mysorensis were observed in semi‐urban areas while only intermediate and mysorensis were seen in rural areas. Breeding experiments indicated no post‐copulatory barriers between the populations. Likelihood analysis of the results of crosses and back crosses indicated that variation in ridge number is controlled by more than one genetic factor. The stocks with different ridge numbers are best considered as ‘ecological variants’.
The Plasmodium falciparum chloroquine resistance transporter (Pfcrt) K76T mutation and haplotype (amino acids 72-76) and the P. falciparum multidrug resistance 1 (Pfmdr1) mutation (N86Y) were analyzed as markers of chloroquine resistance in the DNAs of 73 blood samples from patients with P. falciparum malaria in India. Seventy of the 73 DNAs had the Pfcrt K76T mutation. Of these, 66 had the SVMNT haplotype and four had CVIET, the African/Southeast Asian haplotype. Only 20 of 69 DNAs had the Pfmdr1 N86Y mutation. It is surprising that the Pfcrt haplotype in India is predominantly SVMNT, rather than that seen in Southeast Asia. The widespread prevalence of the Pfcrt K76T mutation is a cause for concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.