In this article, an attempt was made to study the mechanical behaviour of AA7068 - 6 vol. % of MoS2 - X vol. % of WC (X = 0, 5, 10 and 15) hybrid aluminium composites produced by blend–press–sinter methodology. Compacted Powders (700MPa) were sintered at different temperatures (450 0c, 500 0c and 550 0c ) in order to find the influence of sintering temperature on mechanical properties and tribological behavior of AA7068 hybrid composites.The sintered samples have been characterized by x-ray diffraction (XRD) method for identification of phases and also to investigate the phase changes. The change in density, hardness and porosity values of composites were reported. The composite with 15 vol. % of tungsten carbide and 6 vol. % of MoS2 showed the highest hardness and density at the sintering temperature range of 550 0c. Pin-on-disc type apparatus was used for determining the wear loss occurring at different conditions. The hybridization of the two reinforcements enhanced the wear resistance of the composites, especially under high applied load, sliding distance and sliding speeds. Due to this, the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors. The morphology of the wear debris and the worn out surfaces were analyzed to understand the wear mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.