Group-III-nitride semiconductors have shown enormous potential as light sources for full-colour displays, optical storage and solid-state lighting. Remarkably, InGaN blue- and green-light-emitting diodes (LEDs) emit brilliant light although the threading dislocation density generated due to lattice mismatch is six orders of magnitude higher than that in conventional LEDs. Here we explain why In-containing (Al,In,Ga)N bulk films exhibit a defect-insensitive emission probability. From the extremely short positron diffusion lengths (<4 nm) and short radiative lifetimes of excitonic emissions, we conclude that localizing valence states associated with atomic condensates of In-N preferentially capture holes, which have a positive charge similar to positrons. The holes form localized excitons to emit the light, although some of the excitons recombine at non-radiative centres. The enterprising use of atomically inhomogeneous crystals is proposed for future innovation in light emitters even when using defective crystals.
We report temperature-dependent time-integrated and time-resolved photoluminescence (PL) studies of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition. We observed anomalous emission behavior, specifically an S-shaped (decrease–increase–decrease) temperature dependence of the peak energy (Ep) for InGaN-related PL with increasing temperature: Ep redshifts in the temperature range of 10–70 K, blueshifts for 70–150 K, and redshifts again for 150–300 K with increasing temperature. In addition, when Ep redshifts, the spectral width is observed to narrow, while when Ep blueshifts, it broadens. From a study of the integrated PL intensity as a function of temperature, it is found that thermionic emission of photocarriers out of local potential minima into higher energy states within the wells is the dominant mechanism leading to the thermal quenching of the InGaN-related PL. We demonstrate that the temperature-induced S-shaped PL shift is caused by a change in the carrier dynamics with increasing temperature due to inhomogeneity and carrier localization in the InGaN/GaN MQWs.
The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction Rev. Sci. Instrum. 83, 084101 (2012) Synchrotron-based ultrafast x-ray diffraction at high repetition rates Rev. Sci. Instrum. 83, 063303 (2012) Shortening x-ray pulses for pump-probe experiments at synchrotrons J. Appl. Phys. 109, 126104 (2011) High-pressure and high-temperature x-ray diffraction cell for combined pressure, composition, and temperature measurements of hydrides Rev. Sci. Instrum. 82, 065108 (2011) High resolution short focal distance Bent Crystal Laue Analyzer for copper K edge x-ray absorption spectroscopy Rev. Sci. Instrum. 82, 063106 (2011) Additional information on Appl. Phys. Lett.
In the growth of InGaN/GaN multiple quantum well (MQW) structures, a novel defect (called the “V-defect”) initiates at threading dislocations in one of the first quantum wells in a MQW stack. This defect is common to almost all InGaN MQW heterostructures. The nature of the V-defect was evaluated using transmission electron microscopy (TEM), scanning TEM (STEM), and low-temperature cathodoluminescence (CL) on a series of In0.20Ga0.80N/GaN MQW samples. The structure of the V-defect includes buried side-wall quantum wells (on the {101̄1} planes) and an open hexagonal inverted pyramid which is defined by the six {101̄1} planes. Thus, in cross section this defect appears as an open “V”. The formation of the V-defect is kinetically controlled by reduced Ga incorporation on the pyramid walls ({101̄1} planes). The V-defect is correlated with the localized excitonic recombination centers that give rise to a long-wavelength shoulder in photoluminescence (PL) and CL spectra. This long-wavelength shoulder has the following characteristics: (i) its intensity is correlated with the side-wall quantum wells; (ii) the temperature independence of the full width at half maximum strongly supports a localized exciton recombination process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.