The Langmuir−Blodgett deposition of organically passivated gold nanoparticles is reported. A monolayer of these particles has been incorporated into a metal−insulator−semiconductor (MIS) structure. The MIS device exhibits a hysteresis in its capacitance versus voltage characteristic, the magnitude of which is dependent on the voltage sweep conditions. Charge storage in the layer of nanoparticles is thought to be responsible for this effect.
We demonstrate a nonvolatile electrically erasable programmable read-only memory device using gold nanoparticles as charge storage elements deposited at room temperature by chemical processing. The nanoparticles are deposited over a thermal silicon dioxide layer that insulates them from the device silicon channel. An organic insulator deposited by the Langmuir–Blodget technique at room temperature separates the aluminum gate electrode from the nanoparticles. The device exhibits significant threshold voltage shifts after application of low-voltage pulses (⩽±6 V) to the gate and has nonvolatile retention time characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.