Root hairs are extensions of root epidermal cells and a model system for directional tip growth of plant cells. A previously uncharacterized Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinase gene (PIP5K3) was identified and found to be expressed in the root cortex, epidermal cells, and root hairs. Recombinant PIP5K3 protein was catalytically active and converted phosphatidylinositol-4-phosphate to phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P 2 ]. Arabidopsis mutant plants homozygous for T-DNA-disrupted PIP5K3 alleles were compromised in root hair formation, a phenotype complemented by expression of wild-type PIP5K3 cDNA under the control of a 1500-bp PIP5K3 promoter fragment. Root hair-specific PIP5K3 overexpression resulted in root hair deformation and loss of cell polarity with increasing accumulation of PIP5K3 transcript. Using reestablishment of root hair formation in T-DNA mutants as a bioassay for physiological functionality of engineered PIP5K3 variants, catalytic activity was found to be essential for physiological function, indicating that PtdIns(4,5)P 2 formation is required for root hair development. An N-terminal domain containing membrane occupation and recognition nexus repeats, which is not required for catalytic activity, was found to be essential for the establishment of root hair growth. Fluorescencetagged PIP5K3 localized to the periphery of the apical region of root hair cells, possibly associating with the plasma membrane and/or exocytotic vesicles. Transient heterologous expression of full-length PIP5K3 in tobacco (Nicotiana tabacum) pollen tubes increased plasma membrane association of a PtdIns(4,5)P 2 -specific reporter in these tip-growing cells. The data demonstrate that root hair development requires PIP5K3-dependent PtdIns(4,5)P 2 production in the apical region of root hair cells.
We present an analysis of CO spectroscopy and infrared-to-millimetre dust photometry of 11 exceptionally bright far-infrared (FIR) and sub-mm sources discovered through a combination of the Planck all-sky survey and follow-up Herschel-SPIRE imaging -"Planck's Dusty Gravitationally Enhanced subMillimetre Sources". Each source has a secure spectroscopic redshift z = 2.2-3.6 from multiple lines obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry was obtained at IRAM and the SMA, and along with optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources, including several giant arcs. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 µm and 2 mm, respectively. The SEDs of our sources peak near either the 350 µm or 500 µm bands of SPIRE with peak flux densities between 0.35 and 1.14 Jy. All objects are extremely bright isolated point sources in the 18 beam of SPIRE at 250 µm, with apparent FIR luminosities of up to 3 × 10 14 L (not correcting for the lensing effect). Their morphologies, sizes, CO line widths, CO luminosities, dust temperatures, and FIR luminosities provide additional empirical evidence that these are amongst the brightest strongly gravitationally lensed high-redshift galaxies on the sub-mm sky. Our programme extends the successful wide-area searches for strongly gravitationally lensed high-redshift galaxies (carried out with the South Pole Telescope and Herschel) towards even brighter sources, which are so rare that their systematic identification requires a genuine all-sky survey like Planck. Six sources are above the 600 mJy 90% completeness limit of the Planck catalogue of compact sources (PCCS) at 545 and 857 GHz, which implies that these must literally be amongst the brightest high-redshift FIR and sub-mm sources on the extragalactic sky. We discuss their dust masses and temperatures, and use additional WISE 22-µm photometry and template fitting to rule out a significant contribution of AGN heating to the total infrared luminosity. Six sources are detected in FIRST at 1.4 GHz, and the others have sensitive upper limits. Four have flux densities brighter than expected from the local FIR-radio correlation, but in the range previously found for high-z sub-mm galaxies, one has a deficit of FIR emission, and 6 are consistent with the local correlation, although this includes 3 galaxies with upper limits. We attribute this to the turbulent interstellar medium of these galaxies, rather than the presence of radio AGN. The global dust-to-gas ratios and star-formation efficiencies of our sources are predominantly in the range expected from massive, metal-rich, intense, high-redshift starbursts. An extensive multi-wavelength follow-up programme is being carried out to further characterize these sources and the intense star formation within them.Key words. galaxies: high-redshift -galaxies: star formation -galaxies: starburst -submillimeter: galaxies -gravi...
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground-and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
Context. We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive (4 × 10 6 M ) black hole at the Galactic center. Aims. We study and model the physical processes giving rise to the variable emission of Sgr A*. Methods. Our non-relativistic modeling is based on simultaneous observations that have been carried out on 03 June, 2008. We used the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope and the LABOCA bolometer at the Atacama Pathfinder Experiment (APEX). We emphasize the importance of a multi-wavelength simultaneous fitting as a tool for imposing adequate constraints on the flare modeling. Results. The observations reveal strong flare activity in the 0.87 mm (345 GHz) sub-mm domain and in the 3.8 μ/2.2 μm NIR. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5 ± 0.5 h. We explain the flare emission delay by an adiabatic expansion of the source components. The derived physical quantities that describe the flare emission give a source component expansion speed of v exp ∼ 0.005c, source sizes around one Schwarzschild radius with flux densities of a few Janskys, and spectral indices of α = 0.8 to 1.8, corresponding to particle spectral indices ∼2.6 to 4.6. At the start of the flare the spectra of these components peak at frequencies of a few THz. Conclusions. These parameters suggest that the adiabatically expanding source components either have a bulk motion greater than v exp or the expanding material contributes to a corona or disk, confined to the immediate surroundings of Sgr A*.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.