It is becoming recognized that screening of oncology drugs on a platform using two-dimensionally (2D)-cultured cell lines is unable to precisely select clinically active drugs; therefore three-dimensional (3D)-culture systems are emerging and show potential for better simulating the in vivo tumor microenvironment. The purpose of this study was to reveal the differential effects of chemotherapeutic drugs between 2D- and 3D-cultures and to explore their underlying mechanisms. We evaluated differences between 2D- and 3D-cultured breast cancer cell lines by assessing drug sensitivity, oxygen status and expression of Ki-67 and caspases. Three cell lines (BT-549, BT-474 and T-47D) developed dense multicellular spheroids (MCSs) in 3D-culture, and showed greater resistance to paclitaxel and doxorubicin compared to the 2D-cultured cells. An additional three cell lines (MCF-7, HCC-1954, and MDA-MB‑231) developed only loose MCSs in 3D, and showed drug sensitivities similar to those found in the 2D-culture. Treatment with paclitaxel resulted in greater increases in cleaved-PARP expression in the 2D-culture compared with the 3D-culture, but only in cell lines forming dense 3D-MCSs, suggesting that MCS formation protected the cells from paclitaxel-induced apoptosis. Hypoxia was observed only in the dense 3D-MCSs. BT-549 had fewer cells positive for Ki-67 in 3D- than in 2D-culture, suggesting that the greater G0-dormant subpopulation was responsible for its drug resistance in the 3D-culture. BT-474 had a lower level of caspase-3 in the 3D- than in the 2D-culture, suggesting that the 3D-environment was anti-apoptotic. Finally, we compared staining for Ki-67 and caspases in the 2D- and 3D-primary‑cultured cells originating from a patient-derived xenograft (PDX), fresh PDX tumor, and the patient's original tumor; 2D-cultured cells showed greater proportions of Ki-67-positive and caspase-3-positive cells, in agreement with the view that 3D-primary culture better represents characteristics of tumors in vivo. In conclusion, 3D-cultured cells forming dense MCSs may be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely hypoxia, dormancy, anti-apoptotic features and their resulting drug resistance.
Tumor microenvironment plays a key role for tumor development and progression. Although adipose tissue is a predominant component of stroma in mammary tissues and secretes various cytokines, chemokines and growth factors, roles of adipocytes in breast cancers remain to be elucidated. In this study, we found that adipsin, an adipokine secreted from mammary adipose tissues, enhanced proliferation and cancer stem cell (CSC)-like properties of human breast cancer patient-derived xenograft (PDX) cells. Adipsin was predominantly expressed in both adipose tissues of the surgical specimens of breast cancer patients and adipose-derived stem cells (ADSCs) isolated from them, and its expression level was significantly higher in obese patients. ADSCs significantly enhanced the sphere-forming ability of breast cancer PDX cells derived from both estrogen receptor-positive and -negative breast cancer PDX cells. Suppression of adipsin-mediated signaling by a specific inhibitor or adipsin knockdown in ADSCs significantly decreased the sphere-forming ability and the expression of CSC markers in co-cultured breast cancer PDX cells. Growth of breast cancer PDX tumors was significantly enhanced by co-transplantation with ADSCs in vivo, and it was weakened when co-transplanted with the adipsin knocked-down ADSCs. These results suggest that adipsin is an important adipokine secreted from mammary adipose tissue that functions as a component of tumor microenvironment and a CSC niche in breast cancers.
BackgroundTriple-negative breast cancer (TN) is more aggressive than other subtypes of breast cancer and has a lower survival rate. Furthermore, detailed biological information about the disease is lacking. This study investigated characteristics of metabolic pathways in TN.MethodsWe performed the metabolome analysis of 74 breast cancer tissues and the corresponding normal breast tissues using LC/MS. Furthermore, we classified the breast cancer tissues into ER-positive, PgR-positive, HER2-negative breast cancer (EP+H-) and TN, and then the differences in their metabolic pathways were investigated. The RT-PCR and immunostaining were carried out to examine the expression of ELOVL1, 2, 3, 4, 5, 6, and 7.ResultsWe identified 142 of hydrophilic metabolites and 278 of hydrophobic lipid metabolites in breast tissues. We found the differences between breast cancer and normal breast tissues in choline metabolism, glutamine metabolism, lipid metabolism, and so on. Most characteristic of comparison between EP+H- and TN were differences in fatty acid metabolism was which were related to the elongation of very long chain fatty acids were detected between TN and EP+H-. Real-time RT-PCR showed that the mRNA expression levels of ELOVL1, 5, and 6 were significantly upregulated by 8.5-, 4.6- and 7.0-fold, respectively, in the TN tumors compared with their levels in the corresponding normal breast tissue samples. Similarly, the mRNA expression levels of ELOVL1, 5, and 6 were also significantly higher in the EP+H- tissues than in the corresponding normal breast tissues (by 4.9-, 3.4-, and 2.1-fold, respectively). The mRNA expression level of ELOVL6 was 2.6-fold higher in the TN tumors than in the EP+H- tumors. During immunostaining, the TN and EP+H- tumors demonstrated stronger ELOVL1 and 6 staining than the corresponding normal breast tissues, but ELOVL5 was not stained strongly in the TN or EP+H- tumors. Furthermore, the TN tumors exhibited stronger ELOVL1 and 6 staining than the EP+H- tumors.ConclusionsMarked differences in fatty acid metabolism pathways, including those related to ELOVL1 and 6, were detected between TN and EP+H-, and it was suggested that ELOVL1 and 6-related fatty acid metabolism pathways may be targets for therapies against TN.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-017-3554-4) contains supplementary material, which is available to authorized users.
Previous studies using cultured cells showed that primary cilia are present in quiescent cells, but are absent in proliferating cells. We studied here the relationship between the presence or absence of primary cilia and the cell cycle arrest of normal epithelial cells and cancer cells in the human normal breast and breast cancer tissues. In normal breast tissues, although most epithelial cells were nonproliferating as estimated by the immunofluorescence staining of the proliferation marker Ki-67, primary cilia were present only in 20-40% of the epithelial cells. In breast cancer tissues, primary cilia were not observed in any of the breast cancer cells. Furthermore, primary cilia were hardly observed in the nonproliferating cancer cells in the orthotopic and metastatic human breast cancer xenograft tumors in mice. These results indicate that the absence of primary cilia does not necessarily represent the proliferating phases of normal epithelial cells and cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.