The mitochondrial DNA of plants containing the male sterility-causing Ogura cytoplasm of radish contain a novel gene, orf138, that is transcribed as part of a bicistronic mRNA. Genetic studies have previously linked male sterility with the orf138 locus. To determine if orf138 is expressed at the protein level, and investigate the effect of fertility restoration on ORF138 levels, we have raised antibodies to an ORF138-glutathione S-transferase fusion protein. Anti-ORF138 antibodies detect a 20 kDa protein that is associated with the mitochondrial membrane of sterile Ogura radish plants. Nuclear restoration is accompanied by a dramatic reduction in the amount of this protein in mitochondria of flowers and leaves, but not roots of fertile Ogura radish plants. The presence or absence of fertility restoration genes has no detectable effect on the size, abundance, or RNA editing patterns of orf138 transcripts. These results support genetic studies that have implicated orf138 in Ogura cytoplasmic male sterility and suggest that the restorer genes may be affecting either the translation or stability of ORF138.
The orfB locus of the normal (fertile) and Ogura (male-sterile) radish mitochondrial genomes has been characterized in order to determine if this region, which has previously been correlated with cytoplasmic male sterility (CMS) in Brassica napus cybrids (Bonhomme et al. 1991; Temple et al. 1992), could also be involved in radish CMS. In normal radish, orfB is expressed as a 600-nucleotide (nt) transcript. In Ogura radish, orfB is present as the second gene of a 1200-nt transcript that also contains a 138-codon open reading frame (orf138). Sequences showing similarity to orf138 are present in normal radish, but are not expressed.
Glyoxalase II is part of the glutathione-dependent glyoxalase detoxification system. In addition to its role in the detoxification of cytotoxic 2-oxo-aldehydes, specifically methylglyoxal, it has been suggested that the glyoxalase system may also play a role in controlling cell differentiation and proliferation. During the analysis of a T-DNA-tagged mutant of Arabidopsis we identified the gene for a glyoxalase II isozyme (GLY1) that appears to be mitochondrially localized. The cDNA encoding a glyoxalase II cytoplasmic isozyme (GLY2) was also isolated and characterized. Southern blot and sequence analyses indicate that glyoxalase II proteins are encoded by at least two multigene families in Arabidopsis. Escherichia coli cells expressing either GLY1 or GLY2 exhibit increased glyoxalase II activity, confirming that they do, in fact, encode glyoxalase II proteins. Northern analysis shows that the two genes are differentially expressed. Transcripts for the mitochondrial isozyme are most abundant in roots, while those for the cytoplasmic isozyme are highest in flower buds. The identification of glyoxalase II isozymes that are differentially expressed suggests that they may play different roles in the cell.
We recently reported the purification and partial amino acid sequence of “surfactant convertase,” a 72-kDa glycoprotein involved in the extracellular metabolism of lung surfactant (S. Krishnasamy, N. J. Gross, A. L. Teng, R. M. Schultz, and R. Dhand. Biochem. Biophys. Res. Commun. 235: 180–184, 1997). We report here the isolation of a cDNA clone encoding putative convertase from a mouse lung cDNA library. The cDNA spans a 1,836-bp sequence, with an open reading frame encoding 536 amino acid residues in the mature protein and an 18-amino acid signal peptide at the NH2 terminus. The deduced amino acid sequence matches the four partial amino acid sequences (68 residues) that were previously obtained from the purified protein. The deduced amino acid sequence contains an 18-amino acid residue signal peptide, a serine active site consensus sequence, a histidine consensus sequence, five potential N-linked glycosylation sites, and a COOH-terminal secretory-type sequence His-Thr-Glu-His-Lys. Primer-extension analysis revealed that transcription starts 29 nucleotides upstream from the start codon. Northern blot analysis of RNA isolated from various mouse organs showed that convertase is expressed in lung, kidney, and liver as a 1,800-nucleotide-long transcript. The nucleotide and amino acid sequences of putative convertase are 98% homologous with mouse liver carboxylesterase. It thus may be the first member of the carboxylesterase family (EC 3.1.1.1 ) to be expressed in lung parenchyma and the first with a known physiological function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.