Superconductivity (SC) in so-called "unconventional superconductors" is nearly always found in the vicinity of another ordered state, such as antiferromagnetism, charge density wave (CDW), or stripe order. This suggests a fundamental connection between SC and fluctuations in some other order parameter. To better understand this connection, we used high-pressure x-ray scattering to directly study the CDW order in the layered dichalcogenide TiSe 2 , which was previously shown to exhibit SC when the CDW is suppressed by pressure [1] or intercalation of Cu atoms [2]. We succeeded in suppressing the CDW fully to zero temperature, establishing for the first time the existence of a quantum critical point (QCP) at P c = 5.1 ± 0.2 GPa, which is more than 1 GPa beyond the end of the SC region. Unexpectedly, at P = 3 GPa we observed a reentrant, weakly first order, incommensurate phase, indicating the presence of a Lifshitz tricritical point somewhere above the superconducting dome. Our study suggests that SC in TiSe 2 may not be connected to the QCP itself, but to the formation of CDW domain walls.
*The term "unconventional superconductor" once referred to materials whose phenomenology does not conform to the Bardeen-Cooper-Schrieffer (BCS) paradigm for superconductivity. It is now evident that, by this definition, the vast majority of known superconductors are unconventional, notable examples being the copper-oxide, iron-arsenide, and iron-selenide high temperature superconductors, heavy Fermion materials such as CeIn 3 and CeCoIn 5 , ruthenium oxides, organic superconductors such as ϰ-(BEDT-TTF)2X, filled skutterudites, etc.Despite their diversity in structure and phenomenology, the phase diagrams of these materials all exhibit the common trait that superconductivity (SC) resides near the boundary of an ordered phase with broken translational or spin rotation symmetry. For example, SC resides near antiferromagnetism in CeIn 3 [3], near a spin density wave in iron arsenides [4], orbital order in ruthenates [5], and stripe and nematic order in the copper-oxides [6]. The pervasiveness of this "universal phase diagram" suggests that there exists a unifying framework -more general than BCS -in which superconductivity can be understood as coexisting with some ordered phase, and potentially emerging from its fluctuations.A classic example is the transition metal dichalcogenide family, MX 2 , where M=Nb, Ti, Ta, and X=Se, S, which exhibit a rich competition between superconductivity and Peierls-like charge density wave (CDW) order [7]. A recent, prominent case is 1T-TiSe 2 , which under ambient pressure exhibits CDW order below a transition temperature T CDW = 202 K [8]. This CDW phase can be suppressed either with intercalation of Cu atoms [2,9], or through the application of hydrostatic pressure [1,10], causing SC to emerge. These studies suggest that the emergence of SC coincides with a quantum critical point (QCP) at which T CDW goes to zero, suggesting that TiSe 2 exemplifies the universal phenomenon of superconductivity em...