Probabilistic atlases of neuroanatomy are more representative of population anatomy than single brain atlases. They allow anatomical labeling of the results of group studies in stereotaxic space, automated anatomical labeling of individual brain imaging datasets, and the statistical assessment of normal ranges for structure volumes and extents. No such manually constructed atlas is currently available for the frequently studied group of young adults. We studied 20 normal subjects (10 women, median age 31 years) with high-resolution magnetic resonance imaging (MRI) scanning. Images were nonuniformity corrected and reoriented along both the anterior-posterior commissure (AC-PC) line horizontally and the midsagittal plane sagittally. Building on our previous work, we have expanded and refined existing algorithms for the subdivision of MRI datasets into anatomical structures. The resulting algorithm is presented in the Appendix. Forty-nine structures were interactively defined as three-dimensional volumes-of-interest (VOIs). The resulting 20 individual atlases were spatially transformed (normalized) into standard stereotaxic space, using SPM99 software and the MNI/ICBM 152 template. We evaluated volume data for all structures both in native space and after spatial normalization, and used the normalized superimposed atlases to create a maximum probability map in stereotaxic space, which retains quantitative information regarding inter-subject variability. Its potential applications range from the automatic labeling of new scans to the detection of anatomical abnormalities in patients. Further data can be extracted from the atlas for the detailed analysis of individual structures.
MRI scans of patients with idiopathic generalized epilepsy (IGE) are normal on visual assessment. Using an interactive anatomical segmentation technique and volume-of-interest measurements of MRI, we showed recently that patients with IGE had significantly larger cortical grey matter than control subjects. Further, 40% of individual patients with juvenile myoclonic epilepsy (JME), a syndrome of IGE in adolescence, had significant abnormalities of cerebral structure. In this study, we applied the automated and objective technique of statistical parametric mapping (SPM) to the analysis of structural MRI from 20 patients with JME and 30 control subjects. The cortical grey matter of each individual JME patient and the group of JME patients was contrasted with that of the group of 30 normal subjects. The voxel-based SPM comparison between the group of JME patients and the control subjects showed an increase in cortical grey matter in the mesial frontal lobes of the patients. Analysis of individual patients revealed significant abnormalities of cortical grey matter in five out of 20 JME patients, four of whom had been shown to have widespread abnormalities using the previous volume of interest technique. These findings indicate a structural cerebral abnormality in JME, with involvement of mesiofrontal cortical structures.
Heterozygous, de novo, loss-of-function mutations in SOX2 have been shown to cause bilateral anophthalmia. Here we provide a detailed description of the clinical features associated with SOX2 mutations in the five individuals with reported mutations and four newly identified cases (including the first reported SOX2 missense mutation). The SOX2-associated ocular malformations are variable in type, but most often bilateral and severe. Of the nine patients, six had bilateral anophthalmia and two had anophthalmia with contralateral microphthalmia with sclerocornea. The remaining case had anophthalmia with contralateral microphthalmia, posterior cortical cataract and a dysplastic optic disc, and was the only patient to have measurable visual acuity. The relatively consistent extraocular phenotype observed includes: learning disability, seizures, brain malformation, specific motor abnormalities, male genital tract malformations, mild facial dysmorphism, and postnatal growth failure. Identifying SOX2 mutations from large cohorts of patients with structural eye defects has delineated a new, clinically-recognizable, multisystem disorder and has provided important insight into the developmental pathways critical for morphogenesis of the eye, brain, and male genital tract.
PAX6 is widely expressed in the central nervous system. Heterozygous PAX6 mutations in human aniridia cause defects that would seem to be confined to the eye. Magnetic resonance imaging (MRI) and smell testing reveal the absence or hypoplasia of the anterior commissure and reduced olfaction in a large proportion of aniridia cases, which shows that PAX6 haploinsuffiency causes more widespread human neuro developmental anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.