The present study was carried out to analyse the effect of gamma radiation on morpho-physiological parameters of seven days old M1 seedlings of Eleusine coracana (L.) Gaertn. (finger millet). The finger millet seeds were irradiated with different doses of viz., 100 Gy, 200 Gy, 300 Gy, 400 Gy, 500 Gy, 600 Gy, 700 Gy, 800 Gy, 900 Gy and 1000 Gy of gamma ray. Higher doses of gamma rays induced substantial reduction in mean performance of morphological and physiological traits. However, lower doses showed stimulatory effects on morphological and physiological traits. The results revealed a progressive decrease in chlorophyll fluorescence with increasing dose of gamma irradiation. Among all the mutagen doses used, 600 Gy gamma irradiated seeds showed enhanced mean performance of morphological and physiological traits in finger millet. Hence 600 Gy gamma rays may be employed in other crop species to improve the agro-economic traits
Induced mutagenesis by gamma rays plays a potent promising technology to be applied for crop improvement through breeding methods, especially in tiny florets possessing self- pollinated plants such as cereals. Finger millet (Eleusine coracana (L.) Gaertn.) which always ensured for valuable nutrients, as well as famine tolerant crop to supply food for global population throughout the year. The present study was performed to assess the spectrum and frequency of macro mutants induced by gamma radiations in M2 generation finger millet. The chlorophyll mutants viz., albina, xantha, chlorina and viridis and morphological mutants such as tall, dwarf, bushy, brittle stalk and broad leaf were recorded in different doses. Among the mutagen doses 600 Gy dose induced maximum increase in mean values and phenotypic and genotypic coefficients of variation for the plant height (cm), number of leaves per plant, leaf length (cm), number of tillers per plant, number of panicles per plant, panicle length, days to 50% flowering, and 1000 seeds weight. Except for panicle number/plant and 1000 seed weight, all traits showed high heritability in all doses. The results revealed a progressive decrease in mean values of quantitative traits with the increase in doses. The present study provides an idea about the optimum dose of gamma rays from a pool of doses that could be employed in future breeding programmes.
Groundnut (Arachis hypogaea L.) is a member of family Fabaceae. It is an important monoecious annual legume, mainly grown for oilseed. Gamma irradiation is a powerful tool to induce genetic alteration and improvement in crops with beneficial mutants. The study was undertakenn to evaluate the quantitative traits of gamma rays on groundnut. Genetically healthy, dried and uniform size seeds of groundnut variety of Dharani were treated with six doses viz., 100, 200, 300, 400, 500 and 600 Gy of gamma rays. The biological damage based on lethality and injury was estimated in the M1 generation. The present investigation reveals that seed germination LD50 value recorded at 300 Gy and highest survival percentage value was obtained at 100 Gy compared to control and other treatments. In M1 generation, the morphological and quantitative traits were decreased as the dose increases. The maximum reduction was observed at 600 Gy. In general, the higher doses showed increasing plant damage compared to control. The amino acid content was high in 500 Gy doses of gamma irradiation. The lipids, protein and carbohydrate content were high in 400 Gy compared to control and other doses. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the lipid substances and the results showed that significantly more compounds were found in seeds that had received 400 Gy radiation than in untreated seeds. The current study found that gamma irradiation changes the morphology, quantitative characteristics and biochemical composition of groundnut seeds in the M1 generation.
Gamma radiation dosages of 100, 200, 300, 400, 500 and 600 Gy were given to the groundnut seed variety Dharani (Arachis hypogaea L.). The study's goal was to look at genetic diversity, heritability and genetic advancement for seed yield and quality characteristics in M2 generation using only a Randomized Complete Block Experiment using 3 replications from 2018 to 2019. The article's outcomes significantly enhanced the oil content of groundnut at 400 Gy to 52.44 % as compared to other dosages. For all characteristics, treated seeds displayed more variance than control seeds, particularly seed yield per plant showing the highest in GCV, PCV, H2, GA and GAM. In most traits, 400 Gy of gamma-ray treatment generates the largest changes however, 600 Gy of gamma-ray treatment also creates equivalent conditions. The link between features demonstrated that the number of pods per plant had a significant role in rationalizing seed yield variance in the M2 generation. These findings show that this yield component is one of the most important predictors of pod yield variations among plants and it is also favorably impacted by irradiation mutagens (gamma rays).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.