AIMS/HYPOTHESIS: Islet amyloid, which is mainly composed of human islet amyloid polypeptide (hIAPP), is a pathological characteristic of type 2 diabetes and also forms in cultured and transplanted islets. We used islet beta cells as well as two ex vivo models of islet amyloid formation, cultured human islets and hIAPP-expressing transgenic mouse islets with or without beta cell Fas deletion, to test whether: (1) the aggregation of endogenous hIAPP induces Fas upregulation in beta cells; and (2) deletion or blocking of Fas protects beta cells from amyloid toxicity. METHODS: INS-1, mouse or human islet cells were cultured with hIAPP alone, or with amyloid inhibitor or Fas antagonist. Non-transduced islets, and human islets or hIAPP-expressing mouse islets transduced with an adenovirus that delivers a human proIAPP-specific small interfering RNA (siRNA) (Ad-ProhIAPP-siRNA) were cultured to form amyloid. Mouse islets expressing hIAPP with or without Fas were similarly cultured. Beta cell Fas upregulation, caspase-3 activation, apoptosis and function, and islet IL-1β levels were assessed. RESULTS: hIAPP treatment induced Fas upregulation, caspase-3 activation and apoptosis in INS-1 and islet cells. The amyloid inhibitor or Fas antagonist reduced apoptosis in hIAPP-treated beta cells. Islet cells with Fas deletion had lower hIAPP-induced beta cell apoptosis than those expressing Fas. Ad-ProhIAPP-siRNA-mediated amyloid inhibition reduced Fas upregulation and IL-1β immunoreactivity in human and hIAPP-expressing mouse islets. Cultured hIAPP-expressing mouse islets with Fas deletion had similar amyloid levels, but lower caspase-3 activation and beta cell apoptosis, and a higher islet beta:alpha cell ratio and insulin response to glucose, compared with islets expressing Fas and hIAPP. CONCLUSIONS/INTERPRETATION: The aggregation of biosynthetic hIAPP produced in islets induces beta cell apoptosis, at least partially, via Fas upregulation and the Fas-mediated apoptotic pathway. Deletion of Fas protects islet beta cells from the cytotoxic effects of endogenously secreted (and exogenously applied) hIAPP.
The effect of epinephrine on neutrophil (PMN) kinetics in rabbit lungs was evaluated by measuring the retention of radiolabeled PMN's in the lung, the exchange rate between the marginated and circulating pools of PMN's, and the erythrocyte (RBC) transit time. Epinephrine treatment decreased RBC transit times and increased exchange rates in the regions with the shortest transit times but did not change the pulmonary recovery of radiolabeled PMN's. When regions of similar RBC transit time were compared, epinephrine did not affect PMN retention at short transit times but did produce greater retention at long transit times. These data suggest that the major effect of epinephrine was to increase the proportion of the lung having short RBC transit times and fast exchange rates between the marginated and circulating pools. However, this effect did not decrease the overall retention of PMN's most likely because it was balanced by recruitment of additional capillary segments, which increased PMN retention in regions with longer transit times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.