Fatal amphibian chytridiomycosis has typically been associated with the direct costs of infection. However the relationship between exposure to the pathogen, infection and mortality may not be so straightforward. Using results from both field work and experiments we report how exposure of common toads to Batrachochytrium dendrobatidis influences development and survival and how developmental stage influences host responses. Our results show that costs are accrued in a dose dependent manner during the larval stage and are expressed at or soon after metamorphosis. Exposure to B. dendrobatidis always incurs a growth cost for tadpoles and can lead to larval mortality before or soon after metamorphosis even when individuals do not exhibit infection at time of death. In contrast, exposure after metamorphosis almost always results in infection, but body size dictates survival to a greater extent than does dose. These data show that amphibian survival in the face of challenge by an infectious agent is dependent on host condition as well as life history stage. Under current models of climate change, many species of amphibia are predicted to increasingly occur outside their environmental optima. In this case, condition‐dependent traits such as we have demonstrated may weigh heavily on species survival.
BackgroundWith the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform.ResultsAs representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers’ minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed.ConclusionsThe approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources.
To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories.
Bat rabies cases in Europe are principally attributed to two lyssaviruses, namely European bat lyssavirus type 1 (EBLV-1) and European bat lyssavirus type 2 (EBLV-2). Between 1977 and 2011, 961 cases of bat rabies were reported to Rabies Bulletin Europe, with the vast majority (>97%) being attributed to EBLV-1. There have been 25 suspected cases of EBLV-2, of which 22 have been confirmed. In addition, two single isolations of unique lyssaviruses from European insectivorous bats were reported in south-west Russia in 2002 (West Caucasian bat virus) and in Germany in 2010 (Bokeloh bat lyssavirus). In this review, we present phylogenetic analyses of the EBLV-1 and EBLV-2 using partial nucleoprotein (N) gene sequences. In particular, we have analysed all EBLV-2 cases for which viral sequences (N gene, 400 nucleotides) are available (n = 21). Oropharyngeal swabs collected from two healthy Myotis daubentonii during active surveillance programmes in Scotland and Switzerland also yielded viral RNA (EBLV-2). Despite the relatively low number of EBLV-2 cases, a surprisingly large amount of anomalous data has been published in the scientific literature and Genbank, which we have collated and clarified. For both viruses, geographical relationships are clearly defined on the phylogenetic analysis. Whilst there is no clear chronological clustering for either virus, there is some evidence for host specific relationships, particularly for EBLV-1 where more host variation has been observed. Further genomic regions must be studied, in particular for EBLV-1 isolates from Spain and the EBLV-2 isolates to provide support for the existence of sublineages.
Rabies is endemic throughout most of Asia, with the majority of human cases transmitted by domestic dogs (Canis familiaris). Here, we report a case of rabies in a 12-year-old girl in the Lalitpur district of Nepal that might have been prevented by better public awareness and timely post-exposure prophylaxis. Molecular characterization of the virus showed 100% identity over a partial nucleoprotein gene sequence to previous isolates from Nepal belonging to the 'arctic-like' lineage of rabies virus. Sequence analysis of both partial nucleoprotein and glycoprotein genes showed differences in consensus sequence after passage in vitro but not after passage in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.