This paper presents an EEG (Electroencephalography) study that explores correlations between the neurophysiological activations, the nature of the design task and its outputs. We propose an experimental protocol that covers several design-related tasks: including fundamental activities (e.g. idea generation and problem-solving) as well as more comprehensive task requiring the complex higher-level reasoning of designing. We clustered the collected data according to the characteristics of the design outcome and measured EEG alpha band activation during elementary and higher-level design task, whereas just the former yielded statistically significant different behaviour in the left frontal and occipital area. We also found a significant correlation between the ratings for elementary sketching task outcomes and EEG activation at the higher-level design task. These results suggested that EEG activation enables distinguishing groups according to their performance only for elementary tasks. However, this also suggests a potential application of EEG data on the elementary tasks to distinguish the designers' brain response during higher-level of design task.
Design space is a common abstraction in design research used in the investigation of design cognition. Characteristic properties of design spaces and how they change are underexplored. Design spaces can vary with the design task and the task constraints, which are assumed to result in differences in relevant neurocognitive processes. This paper presents the results of analyzing the brain activity, measured using EEG, of 32 professional mechanical engineers and industrial designers while performing constrained and open design tasks. The neurophysiological activations during three stages, namely, reading the task, earliest reaction, and open externalization while designing in constrained and open design tasks are compared based on EEG frequency band power. Results indicate significant differences between constrained and open tasks for the beta frequency bands in the earliest reaction stage, in areas of the brain associated with the cognitive functions of semantic associations, planning and executive control. The first reaction in the open design request results in higher and significantly different brain activations from the first reaction produced in the constrained design task. Significant differences were also found in the alpha 2 and beta frequency bands of higher brain activation in the open externalization stage, for areas of the brain associated with visual mental imagery, search for originality, goal-intensive processing, planning and executive control. We show that EEG brain activation is sensitive to the level of constraints in designing, in particular alpha 2 and beta bands can act as proxies of the change and expansion of design spaces.
We present results from an EEG experiment EEG to measure neurophysiological activation to study novice and experienced designers when designing and problem-solving. We adopted and extended the tasks described in a previous fMRI study. The block experiment consists of 3 tasks: problem-solving, basic design, and open layout design. The block is preceded by a familiarizing pre-task and extended to an open design sketching task. Results from 36 sessions of mechanical engineers and industrial designers indicate significant differences in activations between the problem-solving and the design tasks.
This paper presents results from a design neurocognition study on the effect of gender on EEG frequency band power when performing constrained and open design. We used electroencephalography to measure the brain activity of 84 professional designers. We investigated differences in frequency power associated with gender of 38 female and 46 male designers, while performing two prototypical design tasks. The aim of the study was to explore whether gender moderates brain activity while performing a constrained versus an open design task. Neurophysiological results for aggregate activations across genders and between tasks indicate a main effect of gender for theta, alpha 2, and beta 1 frequency bands. Females show higher theta, alpha 2, and beta 1, namely in the right dorsolateral prefrontal cortex, right occipitotemporal cortex, secondary visual cortex, and prefrontal cortex in both tasks. Females show higher beta bands than males, in areas of the left prefrontal cortex, in the constrained design. While in the open design, females showed higher theta, alpha, and beta 2 in the left prefrontal cortex and secondary visual cortex for all frequency bands. Results within gender between tasks indicate higher theta and alpha in the prefrontal cortex in the constrained design for both genders. Whilst for open design, results indicate higher theta and alpha 1 in the right hemisphere and higher alpha 2 and beta bands across hemispheres for both genders. Results within gender reveal common brain areas and frequency bands in distinguishing constrained from open design.
Using the EEG features extracted from the EEG signals, the presented study investigates differences in the cognitive load posed on engineers while 3D CAD modelling in two different conditions, depending on the visual representations used as stimulus - a 2D and a 3D technical drawing of parts. The results indicate a higher cognitive load during the 2D drawing task. In addition, common indicators of the ongoing spatial information processing were recognised - a suppression of parietal and occipital alpha power, a higher frontal theta, and differences in theta power between the hemispheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.