Postinfarction LV remodeling in the rat is characterized by progressive cavity dilatation, inadequate hypertrophy of the surviving myocardium, the gradual development of regional contractile dysfunction in noninfarcted segments, and marked abnormalities of diastolic filling. These changes can be tracked longitudinally with transthoracic echocardiography.
Background. Previous studies have shown that global left ventricular function is depressed after myocardial infarction. However, little is known about the effects of myocardial infarction on contractility and the passive-elastic properties of residual myocardium.Methods and Results. We evaluated isometric function and passive myocardial stiffness in isolated, noninfarcted left ventricular papillary muscle from rats 6 weeks after sham operation or myocardial infarction. Maximal developed tension and peak rate of tension rise (+dT/dt) were significantly decreased in untreated rats with large myocardial infarction compared with controls (3.3+1.1 versus 43+0.6 g/mm2 and 49.5±f17.5 versus 72.5±+10.5 g/mm2/sec, respectively). Time to peak tension was prolonged (120±8 versus 102±4 msec) and myocardial stiffness was increased in untreated myocardial infarction rats compared with controls (35.2±4.9 versus 24.2±3.7). Rats with smaller myocardial infarctions differed from controls only with respect to a prolongation of time to peak tension. Papillary muscle myocyte cross-sectional area was increased by 44% (p<0.05), and myocardial hydroxyproline content was increased by 160% (p<0.05) in rats with large myocardial infarctions compared with controls. To determine whether treatment that improves left ventricular function after myocardial infarction also improves myocardial function, rats were treated with captopril beginning 3 weeks after myocardial infarction and continuing for 3 weeks. Treatment with captopril attenuated the prolongation in time to peak tension in the myocardial infarction rats; however, developed tension, +dT/dt, and muscle stiffness remained abnormal. Compared with untreated myocardial infarction rats, captopril-treated myocardial infarction rats had a 9% decrease in myocyte cross-sectional area (p=0.1) but a persistent increase in myocardial collagen content. In summary, large myocardial infarction in rats causes contractile dysfunction, increased stiffness, myocyte hypertrophy, and increased collagen content in the residual noninfarcted myocardium. Treatment with captopril alters the process of cardiac remodeling and hypertrophy and improves one parameter of contractility in noninfarcted myocardium; however, myocardial collagen content and myocardial stiffness remain abnormal.Conclusions. These findings suggest that angiotensin converting enzyme inhibition in the rat infarct model of heart failure improves global cardiac performance via combined effects on myocardial function and the peripheral circulation.
The intrarenal renin-angiotension system (RAS) may contribute to the pathophysiology of heart failure by the generation of angiotensin II at local sites within the kidneys. Angiotensin II may directly influence renal hemodynamics, glomerular contractility, and tubular sodium reabsorption, thereby promoting sodium and fluid retention in this syndrome. In the present study, we examined components of the circulating RAS as well as the intrarenal expressions of renin and angiotensinogen mRNA in rats with stable compensated heart failure (HF) 12 wk after experimental myocardial infarction. Renal angiotensinogen mRNA level in vehicle-treated HF rats increased 47%, as compared with sham control rats (P = 0.001). The increase in angiotensinogen mRNA levels was more pronounced in animals with medium (46%, P < 0.05) and large (66%, P < 0.05) infarcts than in those with small infarcts (31%, P = NS). There were no differences in liver angiotensinogen mRNA, circulating angiotensinogen, angiotensin II, plasma renin concentration (PRC), kidney renin content (KRC), and renal renin mRNA level between sham and HFv. In addition, in a separate group of rats with heart failure, we demonstrated that renal angiotensin II concentration increased twofold (P < 0.05) as compared with that of age-matched sham operated controls. A parallel group of heart failure rats (HFe, n = 11) was treated with enalapril (25 mg/kg per d) in drinking water for 6 wk before these measurements. Blood pressure decreased significantly during treatment (91 vs. 103 mm Hg, P < 0.05). Enalapril treatment in HF rats increased renin mRNA level (2.5-fold, P < 0.005), KRC (5.6-fold, P = 0.005), and PRC (15.5-fold, P < 0.005). The increase in renal angiotensinogen mRNA level observed in HFv rats was markedly attenuated in enalapril treated HF rats (P < 0.001), suggesting a positive feedback of angiotensin II on renal angiotensinogen synthesis. These findings demonstrate an activation of intrarenal RAS, but no changes in the circulating counterpart in this model of experimental heart failure, and
Long-term captopril treatment in rats with a large MI modestly limits LV remodeling and the development of systolic dysfunction but markedly improves the restrictive diastolic filling abnormalities that are seen in untreated rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.