A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ∼15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ∼350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10 5 K cm −3 ) molecular -3clouds in the solar neighbourhood. However, it is unknown if these theories extend to clouds in high-pressure (P/k > 10 7 K cm −3 ) environments, like those in the Galaxy's inner 200 pc Central Molecular Zone (CMZ) and in the early Universe. Here we present ALMA 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density PDF is strikingly similar to those of solar neighbourhood clouds, there is one important quantitative difference: its mean column density is 1-2 orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighbourhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighbourhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighbourhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early Universe.
ALMA will revolutionize our understanding of star formation within our galaxy, but before we can use ALMA we need to know where to look. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey is a large international project to map the molecular line emission of over 2,000 dense clumps in the Galactic plane. MALT90 serves as a pathfinder mission for ALMA, providing a large public database of dense molecular clumps associated with high-mass star formation. In this proceedings, we describe the survey parameters and share early science highlights from the survey, including (1) a comparison between galactic and extragalactic star formation relations, (2) chemical trends in MALT90 clumps, (3) the distribution of high-mass star formation in the Milky Way, and (4) a discussion of the "Brick", the target of successful ALMA Cycle 0 and Cycle 1 proposals.
The early evolution of massive cluster progenitors is poorly understood. We investigate the fragmentation properties from 0.3 pc to 0.06 pc scales of a homogenous sample of infrared-quiet massive clumps within 4.5 kpc selected from the ATLASGAL survey. Using the ALMA 7 m array we detect compact dust continuum emission towards all targets and find that fragmentation, at these scales, is limited. The mass distribution of the fragments uncovers a large fraction of cores above 40 M , corresponding to massive dense cores (MDCs) with masses up to ∼400 M . Seventyseven percent of the clumps contain at most 3 MDCs per clump, and we also reveal single clumps/MDCs. The most massive cores are formed within the more massive clumps and a high concentration of mass on small scales reveals a high core formation efficiency. The mass of MDCs highly exceeds the local thermal Jeans mass, and we lack the observational evidence of a sufficiently high level of turbulence or strong enough magnetic fields to keep the most massive MDCs in equilibrium. If already collapsing, the observed fragmentation properties with a high core formation efficiency are consistent with the collapse setting in at parsec scales.
Abstract. We present a multiwavelength study of five methanol maser sites which are not directly associated with a strong (>100 mJy) radio continuum source: G 31. 28+0.06, G 59.78+0.06, G 173.49+2.42 (S231, S233IR), G 188.95+0.89 (S252,. These radio-quiet methanol maser sites are often interpreted as precursors of ultracompact H regions or massive protostar sites. In this work, the environment of methanol masers is probed from mid-IR to millimetre wavelengths at angular resolutions of 8 −34 . Spectral energy distribution (SED) diagrams for each site are presented, together with mass and luminosity estimates. Each radio-quiet maser site is always associated with a massive (>50 M ), deeply embedded (A v > 40 mag) and very luminous (>10 4 L ) molecular clump, with L total ∝ M 0.75 gas . These physical properties characterise massive star-forming clumps in earlier evolutionary phases than H regions. In addition, colder gas clumps seen only at mm-wavelengths are also found near the methanol maser sites. These colder clumps may represent an even earlier phase of massive star formation. These results suggest an evolutionary sequence for massive star formation from a cold clump, seen only at mm wavelengths, evolving to a hot molecular core with a two-component SED with peaks at far-IR and mid-IR wavelengths, to an (ultra-compact) H region. Alternatively, the cold clumps might be clusters of low-mass YSOs, in formation near the massive star-forming clusters. Finally, the values of the dust grain emissivity index (β) range between 1.6 and 1.9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.