The Yukon-Kuskokwim (YK) Delta is a region of discontinuous permafrost in the subarctic of southwestern Alaska. Many wildfires have occurred in the YK Delta between 1971-2015, impacting vegetation cover, surface soil moisture, and the active layer. Herein, we demonstrate that the remotely sensed active layer thickness (ReSALT) algorithm can resolve the post-fire active layer dynamics of tundra permafrost. We generated a stack of Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar interferograms over a study region in the YK Delta spanning 2007-2010. We applied ReSALT to this stack of interferograms to measure seasonal subsidence associated with the freezing and thawing of the active layer and subsidence trends associated with wildfire. We isolated two wildfire-induced subsidence signatures, associated with the active layer and the permafrost layer. We demonstrate that InSAR is sensitive to increases in active layer thickness following wildfire, which recovers to pre-fire values after approximately 25 years. Simultaneously, we show that fire gradually thins the permafrost layer by 4 m, which recovers to pre-fire thickness after 70 years.
Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient‐limited tundra ecosystems. To investigate the effects of tundra wildfire on lateral nutrient export, we analyzed water chemistry in and around the 10‐year‐old Anaktuvuk River fire scar in northern Alaska. We collected water samples from 21 burned and 21 unburned watersheds during snowmelt, at peak growing season, and after plant senescence in 2017 and 2018. After a decade of ecosystem recovery, aboveground biomass had recovered in burned watersheds, but overall carbon and nitrogen remained ~20% lower, and the active layer remained ~10% deeper. Despite lower organic matter stocks, dissolved organic nutrients were substantially elevated in burned watersheds, with higher flow‐weighted concentrations of organic carbon (25% higher), organic nitrogen (59% higher), organic phosphorus (65% higher), and organic sulfur (47% higher). Geochemical proxies indicated greater interaction with mineral soils in watersheds with surface subsidence, but optical analysis and isotopes suggested that recent plant growth, not mineral soil, was the main source of organic nutrients in burned watersheds. Burned and unburned watersheds had similar δ15N‐NO3−, indicating that exported nitrogen was of preburn origin (i.e., not recently fixed). Lateral nitrogen flux from burned watersheds was 2‐ to 10‐fold higher than rates of background nitrogen fixation and atmospheric deposition estimated in this area. These findings indicate that wildfire in Arctic tundra can destabilize nitrogen, phosphorus, and sulfur previously stored in permafrost via plant uptake and leaching. This plant‐mediated nutrient loss could exacerbate terrestrial nutrient limitation after disturbance or serve as an important nutrient release mechanism during succession.
Fire frequency and severity are increasing in tundra and boreal regions as climate warms, which can directly affect climate feedbacks by increasing carbon (C) emissions from combustion of the large soil C pool and indirectly via changes in vegetation, permafrost thaw, hydrology, and nutrient availability. To better understand the direct and indirect effects of changing fire regimes in northern ecosystems, we examined how differences in soil burn severity (i.e., extent of soil organic matter combustion) affect soil C, nitrogen (N), and phosphorus (P) availability and microbial processes over time. We created experimental burns of three fire severities (low, moderate, and high) in a larch forest in the northeastern Siberian Arctic and analyzed soils at 1, 8 days, and 1 year postfire. Labile dissolved C and N increased with increasing soil burn severity immediately (1 day) postfire by up to an order of magnitude, but declined significantly 1 week later; both variables were comparable or lower than unburned soils by 1 year postfire. Soil burn severity had no effect on P in the organic layer, but P increased with increasing severity in mineral soil horizons. Most extracellular enzyme activities decreased by up to 70% with increasing soil burn severity. Increasing soil burn severity reduced soil respiration 1 year postfire by 50%. However, increasing soil burn severity increased net N mineralization rates 1 year postfire, which were 10-fold higher in the highest burn severity. While fires of high severity consumed approximately five times more soil C than those of low severity, soil C pools will also be driven by indirect effects of fire on soil processes. Our data suggest that despite an initial increase in labile C and nutrients with soil burn severity, soil respiration and extracellular activities related to the turnover of organic matter were greatly reduced, which may mitigate future C losses following fire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.