We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one-third to three-fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.