Amylases are one of the most important enzymes in present-day biotechnology. The present study was concerned with the production and partial characterization of extracellular amylase from Bacillus amyloliquefaciens P-001. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Enzyme production was induced by a variety of starchy substrate but corn flour was found to be a suitable natural source for maximum production. Tryptone and ammonium nitrate (0.2%) as nitrogen sources gave higher yield compared to other nitrogen sources. Maximum enzyme production was obtained after 48 hrs of incubation in a fermentation medium with initial pH 9.0 at 42°C under continuous agitation at 150 rpm. The size of inoculum was also optimized which was found to be 1% (v/v). Enzyme production was 2.43 times higher after optimizing the production conditions as compared to the basal media. Studies on crude amylase revealed that optimum pH, temperature and reaction time of enzyme activity was 6.5, 60°C and 40 minutes respectively. About 73% of the activity retained after heating the crude enzyme solution at 50°C for 30 min. The enzyme was activated by Ca2+ (relative activity 146.25%). It was strongly inhibited by Mn2+, Zn2+ and Cu2+, but less affected by Mg2+ and Fe2+.
BackgroundSecondary metabolites ranging from furanone to exo-polysaccharides have been suggested to have anti-biofilm activity in various recent studies. Among these, Escherichia coli group II capsular polysaccharides were shown to inhibit biofilm formation of a wide range of organisms and more recently marine Vibrio sp. were found to secrete complex exopolysaccharides having the potential for broad-spectrum biofilm inhibition and disruption.ResultsIn this study we report that a newly identified ca. 1800 kDa polysaccharide having simple monomeric units of α-D-galactopyranosyl-(1→2)-glycerol-phosphate exerts an anti-biofilm activity against a number of both pathogenic and non-pathogenic strains without bactericidal effects. This polysaccharide was extracted from a Bacillus licheniformis strain associated with the marine organism Spongia officinalis. The mechanism of action of this compound is most likely independent from quorum sensing, as its structure is unrelated to any of the so far known quorum sensing molecules. In our experiments we also found that treatment of abiotic surfaces with our polysaccharide reduced the initial adhesion and biofilm development of strains such as Escherichia coli PHL628 and Pseudomonas fluorescens.ConclusionThe polysaccharide isolated from sponge-associated B. licheniformis has several features that provide a tool for better exploration of novel anti-biofilm compounds. Inhibiting biofilm formation of a wide range of bacteria without affecting their growth appears to represent a special feature of the polysaccharide described in this report. Further research on such surface-active compounds might help developing new classes of anti-biofilm molecules with broad spectrum activity and more in general will allow exploring of new functions for bacterial polysaccharides in the environment.
Background and Purpose: Klebsiella pneumoniae and Klebsiella oxytoca are the two most common pathogens causing nosocomial infections in humans and are of great concern for developing multidrug resistance. In the present study, K. pneumoniae and K. oxytoca from clinical samples were evaluated for their antibiotic sensitivity patterns against commonly used antibiotics and production of extended-spectrum beta-lactamase (ESBL). Ampicillin, Amoxicillin, Ceftriaxone, Ciprofloxacin, Gentamicin, Nalidixic acid, Tetracycline was 100%, 90%, 45%, 40%, 45%, 25%, 50%, 35% respectively. Multidrug resistance was found more common in K. pneumoniae (56%) than in K. oxytoca (50%). Prevalence rate of ESBL producing Klebsiella was found 45% among which K. pneumoniae (50%) were found more prominent than K. oxytoca (25%). All the ESBL producing Klebsiella isolates were found to be multidrug resistant, showing 100% resistance to Ampicillin, Amoxicillin, Ceftriaxone and Ciprofloxacin. Materials and Methods:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.