In this chapter, we present the experimental and numerical study of an optoelectronics flexible logic gate using a chaotic erbium-doped fiber laser. The implementation consists of three elements: a chaotic erbium-doped fiber laser, a threshold controller, and the logic gate output. The output signal of the fiber laser is sent to the logic gate input as the threshold controller. Then, the threshold controller output signal is sent to the input of the logic gate and fed back to the fiber laser to control its dynamics. The logic gate output consists of a difference amplifier, which compares the signals sent by the threshold controller and the fiber laser, resulting in the logic output, which depends on an accessible parameter of the threshold controller. The dynamic logic gate using the fiber laser exhibits high ability in changing the logic gate type by modifying the threshold control parameter.
Graphene is a useful saturable absorber in a variety of lasers working in mode-locking or Q-switch regimes. The optical performance of chemically synthesized graphene is still not completely characterized. In this study, the saturable absorption and the nonlinear refractive index of graphene flakes in N-methylpyrrolidone, in both liquid and solid phases, have been studied at 800 nm with the z-scan technique using femtosecond laser pulses. The results obtained using a Ti:sapphire laser oscillator in the mode-locking regime (6 fs, 78 MHz) or in the continuous wave shows that the optical properties of graphene have a thermal origin, while at the lower repetition rate and higher energy and intensity of a Ti:sapphire amplifier (95 fs, 1 kHz), it shows the electronic Kerr effect. Solid samples with very high optical densities, equivalent to 60 layers of graphene grown by chemical vapor deposition (CVD), can be fabricated. They show a higher saturation intensity (Is≈100 GW cm–2) than CVD-grown (74 MW cm–2) or epitaxially grown (4 GW cm–2) graphene and intensity-dependent changes in transmission from 25% to 43%. This change in transmission in multilayer solid samples points to a good performance as a saturable absorber in laser cavities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.