The present work deals with the photopolymerization of 2-phenylethyl (meth)acrylates and estimation of their kinetic parameters. Formulations were made by independently homogenizing the monomers with photoinitiators of two different classes. Two different compositions of photoinitiators were used to study the effect of concentration of photoinitiator on cure kinetics. These compositions obtained were tested for photo curing performance using differential photocalorimetry (DPC) or photo DSC under polychromatic radiation. The heat flow against time was recorded for all formulations under isothermal conditions and the rates of polymerization as well as the percentage conversions were estimated. It was observed that due to a longer timescale for reaction diffusion, the methacrylate formulations showed a higher conversion than acrylate formulations. Other parameters such as induction time, maximum rate and conversion attained as well as the time to attain peak maximum were noted. The photopolymerization and kinetic estimations of the formulations including evaluation of kinetic models are discussed.
Diethyl[3-(methoxydimethylsilyl)propyl]phosphonate (DMPP) polymer was synthesized for the strontium (II) metal ion recovery using diethylallylphosphonate as staring material. Diethylallylphosphonate was reacted with poly(methylhydro)siloxane (MW 1900-2000 g mol −1) in the presence of Speier's catalyst. The synthesized monomer was characterized by IR, 1 H NMR, 13 C NMR and FT-IR spectroscopy techniques, and the synthesized polymers were characterized by IR and NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis and solubility. The synthesized polymer was used for sequestering strontium metal from the aqueous solution. The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, namely initial pH, adsorbent dose and the contact time. The reaction kinetics was determined by the Langmuir, Freundlich, and pseudo-firstand second-order models. Results of this study indicate that the synthesized polymer DMPP has been effective in removing Sr(II) from the aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.