In this paper we are extracting feature of handwritten and ISM printed characters of devanagri script. we are extracting Gradient feature of the devanagari script ,for that we are using two operators i.e. Sobel and Robert operator respectively. Here we are computing gradient in 8,12,16,32 directions and getting different feature vectors respectively. We are using each directional vector separately for classification.
In this paper, the performance of speaker modeling schemes such as vector quantization (VQ) and Gaussian mixture model (GMM) is compared for speaker identification. Along with the effective size of feature set, model based approaches are typically used as a solution for robustness issues of speaker recognition systems. Gaussian Mixture Model (GMM) is versatile parameter estimation approach whereas; Vector Quantization (VQ) is based on template modeling. Here, first, MFCC features are used to extract speaker specific speech features for text-independent speaker identification. MFCC features are then modeled using Vector Quantization (VQ) and Gaussian mixture model (GMM) and their performance is compared in the context of speaker identification. The average recognition rate achieved for MFCC with GMM is 99.2% and for MFCC with VQ is 98.4% on TIMIT database consisting of 64 speakers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.