Traditional statistical detectors of the discrete wavelet transform (DWT)-based image watermarking use probability density functions (PDFs) that show inadequate matching with the empirical PDF of image coefficients in view of the fact that they use a fixed number of parameters. Hence, the decision values obtained from the estimated thresholds of these detectors provide substandard detection performance. In this paper, a new detector is proposed for the DWT-based additive image watermarking, wherein a PDF based on the Gauss-Hermite expansion is used, in view of the fact that this PDF provides a better statistical match to the empirical PDF by utilizing an appropriate number of parameters estimated from higher-order moments of the image coefficients. The decision threshold and the receiver operating characteristics are derived for the proposed detector. Experimental results on test images demonstrate that the proposed watermark detector performs better than other standard detectors such as the Gaussian and generalized Gaussian (GG), in terms of the probabilities of detection and false alarm as well as the efficacy. It is also shown that detection performance of the proposed detector is more robust than the competitive GG detector in the case of compression, additive white Gaussian noise, filtering, or geometric attack.
The probability density functions (PDFs) of the wavelet coefficients play a key role in many wavelet-based image processing algorithms, such as denoising. The conventional PDFs usually have a limited number of parameters that are calculated from the first few moments only. Consequently, such PDFs cannot be made to fit very well with the empirical PDF of the wavelet coefficients of an image. As a result, the shrinkage function utilizing any of these density functions provides a substandard denoising performance. In order for the probabilistic model of the image wavelet coefficients to be able to incorporate an appropriate number of parameters that are dependent on the higher order moments, a PDF using a series expansion in terms of the Hermite polynomials that are orthogonal with respect to the standard Gaussian weight function, is introduced. A modification in the series function is introduced so that only a finite number of terms can be used to model the image wavelet coefficients, ensuring at the same time the resulting PDF to be non-negative. It is shown that the proposed PDF matches the empirical one better than some of the standard ones, such as the generalized Gaussian or Bessel K-form PDF. A Bayesian image denoising technique is then proposed, wherein the new PDF is exploited to statistically model the subband as well as the local neighboring image wavelet coefficients. Experimental results on several test images demonstrate that the proposed denoising method, both in the subband-adaptive and locally adaptive conditions, provides a performance better than that of most of the methods that use PDFs with limited number of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.