The CuO nanoparticle doped poly(vinyl alcohol) (PVA) nanocomposite films were prepared by the solution casting method. The structure of the prepared CuO nanoparticles and PVA nanocomposite films were confirmed by FTIR spectroscopy and XRD. The (101) crystal plane of PVA was observed at 19.8 in XRD. The size of the CuO nanoparticles was determined as 20 nm using Scherrer's formula. It was further confirmed with HRTEM. The surface morphology of the nanocomposite films was investigated using SEM. The optical properties of the prepared CuO nanoparticles and PVA nanocomposite films were analyzed by UV-Visible spectroscopy. The band gap of PVA was decreased after the incorporation of CuO in PVA. The thermal stability of the pure PVA and its nanocomposites was examined using TGA to assess their thermal degradation temperature at five different heating rates. The thermal stability of PVA nanocomposites was increased as compared with pure PVA. The non-isothermal degradation kinetic studies were also carried out to determine the energy of activation (E a ) for the degradation process using four different kinetic models. The tensile strength and Young's modulus of PVA nanocomposite films were notably increased with the increasing concentration of CuO nanoparticles. POLYM. COMPOS., 40:3737-3748, 2019. POLYMER COMPOSITES-2019 FIG. 4. HRTEM image of (a) CuO nanoparticles, (b) SAED pattern of CuO, and (c) HRTEM image of 6 wt% CuO loaded PVA nanocomposites system. [Color figure can be viewed at wileyonlinelibrary.com]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.