There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry.
Results of the studies are reported relating to application of the silanized nanostructured zirconia, electrophoretically deposited onto indium tin oxide (ITO) coated glass for covalent immobilization of the monoclonal antibodies (anti‐CYFRA‐21‐1). This biosensing platform has been utilized for a simple, efficient, noninvasive, and label‐free detection of oral cancer via cyclic voltammetry technique. The results of electrochemical response studies conducted on bovine serum albumin (BSA)/anti‐CYFRA‐21‐1/3‐aminopropyl triethoxy silane (APTES)/ZrO2/ITO immunoelectrode reveal that this immunoelectrode can be used to measure CYFRA‐21‐1 (oral cancer biomarker) concentration in saliva samples, with a high sensitivity of 2.2 mA mL ng−1, a linear detection range of 2–16 ng mL−1, and stability of six weeks. The results of these studies have been validated via enzyme‐linked immunosorbent assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.