MoN x O y films were deposited on steel substrates by dc reactive magnetron sputtering. The depositions were carried out from a pure molybdenum target, varying the flow rate of reactive gases. X-ray diffraction (XRD) results revealed the occurrence of cubic MoN x and hexagonal (d-MoN) phases for the films with high nitrogen flow rates. The increase of oxygen content induces the decrease of the grain size of the molybdenum nitride crystallites. The thermal stability of a set of samples was studied in vacuum, for an annealing time of 1 h, for temperatures ranging from 500 to 800 C in 100 C steps. The results showed that pure molybdenum nitride films changed their structure from a meta-stable cubic MoN to hexagonal d-MoN and cubic g-Mo 2 N-type structures with increasing annealing temperatures. The samples with molybdenum nitride films evidenced a good thermal stability, but those with molybdenum oxynitride coatings showed a tendency to detach with the increase of the annealing temperature.
The goal of this paper is to present the structure and properties of the magnesium cast alloys in as-cast state and after heat treatment. Moreover the purpose of this paper is to extend a complex evaluation of magnesium alloys after laser surface treatment and the new methodology to determine thermal characteristics of magnesium alloy using the novel Universal Metallurgical Simulator and Analyzer Platform (UMSA). The presented results concern X-ray qualitative and quantitative microanalysis as well as qualitative X-ray diffraction method, light and scanning microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.