Impedance cardiography (ICG) is a non-invasive technique for diagnosing cardiovascular diseases. In the acquisition procedure, the ICG signal is often affected by several kinds of noise which distort the determination of the hemodynamic parameters. Therefore, doctors cannot recognize ICG waveform correctly and the diagnosis of cardiovascular diseases became inaccurate. The aim of this work is to choose the most suitable method for denoising the ICG signal. Indeed, different wavelet families are used to denoise the ICG signal. The Haar, Daubechies (db2, db4, db6, and db8), Symlet (sym2, sym4, sym6, sym8) and Coiflet (coif2, coif3, coif4, coif5) wavelet families are tested and evaluated in order to select the most suitable denoising method. The wavelet family with best performance is compared with two denoising methods: one based on Savitzky-Golay filtering and the other based on median filtering. Each method is evaluated by means of the signal to noise ratio (SNR), the root mean square error (RMSE) and the percent difference root mean square (PRD). The results show that the Daubechies wavelet family (db8) has superior performance on noise reduction in comparison to other methods.
Mucormycoses are serious infections caused by filamentous fungi of the order Mucorales. They occur most often in immunocompromised patients. We report five cases of mucormycosis in patients hospitalized in the Infectious Diseases Department in Sousse – Tunisia between 2000 and 2013. They were 4 males and one female, mean age 60 years. Three patients were diabetic and one patient had acute leukemia. The locations of mucormycosis were rhinocerebral, rhino-orbital, auricular, pulmonary and cutaneous. The Mucorales isolated were Rhizopus arrhizus in 3 cases and Lichteimia in 2 cases. All patients were treated with amphotericin B and 2 patients had, in addition, surgical debridement. Two patients died and 2 kept peripheral facial paralysis.
Chitosan films are increasingly being applied in the biomedical field owing to their biocompatibility, biodegradability, non-toxicity, mucoadhesive nature, hemostatic properties, antibacterial and biological activities. This study aimed to enhance the mechanical properties of chitosan films by doping niosomal sage nanoparticles (NS-SagNPs) at various concentrations (100-300 μg). The NS-SagNPs were prepared by a thin-film hydration process with an average particle size of 21.5 nm. The doped chitosan films were fabricated through a simple casting method. FTIR and DSC measurements confirmed the successful incorporation of NS-SagNPs in the chitosan films. The mechanical properties of the doped films were improved and the most significant improvement was found in tensile strength and elasticity when the NS-SagNPs loading was increased to 300 μg. Based on these results, chitosan films doped with NS-SagNPs have the advantageous feature of sage and show enhanced mechanical properties compared with pure chitosan, rendering them more suitable for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.