Due to their high specific strength at elevated temperatures and resistance to oxidative environments, SiC-based fibers are of great interest for the reinforcement of ceramic matrix composites. They are however subjected to a slow crack growth (SCG) phenomenon causing their delayed failure under subcritical conditions. The testing of filaments, other than comprising handling difficulties, requires large sets of data (broadly dispersed), drawback alleviated by multifilament tow testing. The data available in the present paper correspond to a comprehensive mechanical characterization and static fatigue testing of various types of SiC-based fiber bundles. The initial non-linearity of load displacement curves were analyzed to reveal the tow structure originating from filament misalignment. Static fatigue tests were used to assess the lifetime prediction coefficients and its distribution parameters. These data may found interest for the interpretation of dispersion bundle testing can highlight under different solicitation mode. Such data are also prominent for the wealth of composite design and to guaranty long term performances over the broad application field offered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.