Theileria orientalis Ikeda genotype is a parasite that causes a disease in cattle that results in major economic issues in Asia, New Zealand, and Australia. The parasite is transmitted by Haemaphysalis longicornis ticks, which have recently been reported in numerous states throughout the eastern United States. Concurrently, cattle in Virginia showed clinical signs consistent with a hemoprotozoan infection. We used amplicons specific for the major piroplasm surface protein and small subunit rDNA of piroplasms to test blood samples from the cattle by PCR. Bidirectional Sanger sequencing showed sequences with 100% identity with T. orientalis Ikeda genotype 2 sequences. We detected the parasite in 3 unrelated herds and from various animals sampled at 2 time points. Although other benign T. orientalis genotypes are endemic to the United States, detection of T. orientalis Ikeda genotype might represent a risk for the cattle industry in Virginia.
Regulatory T cells (Tregs) are a subset of T cells that are responsible for maintaining peripheral immune tolerance and homeostasis. The hallmark of Tregs is the expression of the forkhead box P3 (FoxP3) transcription factor. Natural regulatory T cells (nTregs) are a distinct population of T cells that express CD4 and FoxP3. nTregs develop in the thymus and function in maintaining peripheral immune tolerance. Other CD4+, CD4-CD8-, and CD8+CD28- T cells can be induced to acquire regulatory function by antigenic stimulation, depending on the cytokine milieu. Inducible (or adaptive) Tregs frequently express high levels of the interleukin 2 receptor (CD25). Atypical Tregs express FoxP3 and CD4 but have no surface expression of CD25. Type 1 regulatory T cells (Tr1 cells) produce IL-10, while T helper 3 cells (Th3) produce TGF-β. The function of inducible Tregs is presumably to maintain immune homeostasis, especially in the context of chronic inflammation or infection. Induction of Tregs in coronaviral infections protects against the more severe forms of the disease attributable to the host response. However, arteriviruses have exploited these T cell subsets as a means to dampen the immune response allowing for viral persistence. Treg induction or activation in the pathogenesis of disease has been described in both porcine reproductive and respiratory syndrome virus, lactate dehydrogenase elevating virus, and mouse hepatitis virus. This review discusses the development and biology of regulatory T cells in the context of arteriviral and coronaviral infection.
The black-legged tick Ixodes scapularis Linnaeus (Acari: Ixodidae) is an important vector of microbial pathogens. Knowledge of the tick's innate immune response, particularly defensin and other antimicrobial peptides, is important for understanding how microbes survive in this tick. A defensin gene (slnA) from I. scapularis was obtained by reverse transcription-polymerase chain reaction (RT-PCR) using mRNA extracted from tissues of female ticks. RT-PCR indicated the gene was expressed in the midgut, haemocytes, and fat-body, although no evidence of a peptide was found. Sequencing a cloned cDNA fragment revealed a 225 bp open reading frame encoding a 74 amino acid pre-prodefensin, including the putative 38 amino acid mature peptide. Similarity between the defensin amino acid sequences of I. scapularis and Dermacentor variabilis (Say) (Acari: Ixodidae) was 62.2% for the pre-prodefensin region; for the mature defensins from these two species the similarity was 78.9%, with the six cysteine residues being located in the same relative position. PCR amplification and sequencing of chromosomal DNA suggests that slnA, along with vsnA, the defensin gene from D. variabilis, does not contain any introns. This is in contrast to the defensins described for the soft tick, Ornithodoros moubata (sensu Walton) (Acari: Argasidae). The role of defensin in the innate immune response of I. scapularis following microbial invasions is discussed.
Background Theileria orientalis is a tick-borne hemoparasite that causes anemia, ill thrift, and death in cattle globally. The Ikeda strain of T.orientalis is more virulent than other strains, leading to severe clinical signs and death of up to 5% of affected animals. Within the Asia–Pacific region, where it affects 25% of Australian cattle, T.orientalis Ikeda has a significant economic impact on the cattle industry. In 2017, T.orientalis Ikeda was detected in a cattle herd in Albermarle County, Virginia, United States. Months earlier, the U.S. was alerted to the invasion of the Asian longhorned tick, Haemaphysalis longicornis, throughout the eastern U.S. Abundant H.longicornis ticks were identified on cattle in the T.orientalis-affected herd in VA, and a subset of ticks from the environment were PCR-positive for T.orientalis Ikeda. A strain of T.orientalis from a previous U.S. outbreak was not transmissible by H.longicornis; however, H.longicornis is the primary tick vector of T.orientalis Ikeda in other regions of the world. Thus, the objective of this study was to determine whether invasive H.longicornis ticks in the U.S. are competent vectors of T.orientalis Ikeda. Methods Nymphal H.longicornis ticks were fed on a splenectomized calf infected with the VA-U.S.-T.orientalis Ikeda strain. After molting, a subset of adult ticks from this cohort were dissected, and salivary glands assayed for T.orientalis Ikeda via qPCR. The remaining adult ticks from the group were allowed to feed on three calves. Calves were subsequently monitored for T.orientalis Ikeda infection via blood smear cytology and PCR. Results After acquisition feeding on a VA-U.S.-T.orientalis Ikeda-infected calf as nymphs, a subset of molted adult tick salivary glands tested positive by qPCR for T.orientalis Ikeda. Adult ticks from the same cohort successfully transmitted T.orientalis Ikeda to 3/3 naïve calves, each of which developed parasitemia reaching 0.4–0.9%. Conclusions Our findings demonstrate that U.S. H.longicornis ticks are competent vectors of the VA-U.S.-T.orientalis Ikeda strain. This data provides important information for the U.S. cattle industry regarding the potential spread of this parasite and the necessity of enhanced surveillance and control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.