The unmanned aerial vehicles (UAVs) emerged into a promising research trend within the recurrent year where current and future networks are to use enhanced connectivity in these digital immigrations in different fields like medical, communication, and search and rescue operations among others. The current technologies are using fixed base stations to operate onsite and off-site in the fixed position with its associated problems like poor connectivity. This open gate for the UAV technology is to be used as a mobile alternative to increase accessibility with fifth-generation (5G) connectivity that focuses on increased availability and connectivity. There has been less usage of wireless technologies in the medical field. This paper first presents a study on deep learning to medical field application in general and provides detailed steps that are involved in the multiarmed bandit (MAB) approach in solving the UAV biomedical engineering technology device and medical exploration to exploitation dilemma. The paper further presents a detailed description of the bandit network applicability to achieve close optimal performance and efficiency of medical engineered devices. The simulated results depicted that a multiarmed bandit problem approach can be applied in optimizing the performance of any medical networked device issue compared to the Thompson sampling, Bayesian algorithm, and ε-greedy algorithm. The results obtained further illustrated the optimized utilization of biomedical engineering technology systems achieving thus close optimal performance on the average period through deep learning of realistic medical situations.
The application of Big Data Analytics is identified through the Cyber Research Alliance for cybersecurity as the foremost preference for future studies and advancement in the field of cybersecurity. In this study, we develop a repeatable procedure for detecting cyber-attacks in an accurate, scalable, and timely manner. An in-depth learning algorithm is utilized for training a neural network for detecting suspicious user activities. The proposed system architecture was implemented with the help of Splunk Enterprise Edition 6.42. A data set of average feature counts has been executed through a Splunk search command in 1-min intervals. All the data sets consisted of a minute trait total derived from a sparkling file. The attack patterns that were not anonymized or were indicative of the vulnerability of cyber-attack were denoted with yellow. The rule-based method dispensed a low quantity of irregular illustrations in contrast with the Partitioning Around Medoids method. The results in this study demonstrated that using a proportional collection of instances trained with the deep learning algorithm, a classified data set can accurately detect suspicious behavior. This method permits for the allocation of multiple log source types through a sliding time window and provides a scalable solution, which is a much-needed function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.