Marketing means the strategies and tactics an organization undertakes for attracting consumers to promote the buying or selling of a product or service. Active marketing is about receiving messages from potential buyers to create ways to influence their purchasing decisions. Advertising is one of the most prominent marketing strategies to promote products to consumers. It is well known that advertisement has a significant impact on the sale of certain goods or services. In this paper, we consider two mediums of advertisement, such as Facebook (which is an online medium) and Newspaper (which is a printed medium). We consider a dataset representing the advertising budget (in hundreds of US dollars) of an electronic company and the sales of that company. We apply the quantitative research approach, and the data which are used in this research are secondary data. For analysis purposes, we consider a statistical tool called simple linear regression modeling. To check the significance of the advertising on sale, definite statistical tests are applied. Based on the findings of this research, it is observed that advertising has a significant impact on sales. It is also showed that spending money on advertising through Facebook has better sales than newspapers. The finding of this research shows that the use of computer-based technologies and online mediums has a brighter future for advertising. Furthermore, a new statistical model is introduced using the Z family approach. The proposed model is very interesting and possesses heavy-tailed properties. Finally, the applicability of the proposed model is illustrated by considering the financial dataset.
Reinforcement learning (RL) is a new research area practical in the internet of things (IoT) where it addresses a broad and relevant task through about making decisions. RL enables interaction of devices and with the environment through a probabilistic approach using the response from its own actions and experiences. RL permits the machine and software agent to attain its behavior constructed on feedback from the environment. The IoTs extends to devices to the internet like smart electronic devices that can network and interconnect with others over through connectivity of remote resources being supervised and meticulous. In this paper, we examine the main four RL techniques including Markov Decision Process (MDP), Learning Automata (LA), artificial neural network (ANN), Q-learning in relation to its applicability in IoT, challenges and link them to state of art solutions. This review provides a summarized analysis of RL techniques that researchers can use to identify current bottlenecks in IoT and suggest models that are in line with the move.
<p>The 5G technology is predicted to achieve the unoptimized millimeter Wave (mmWave) of 30-300 GHz bands. This unoptimized band because of the loss of mm-Wave bands, like path attenuation and propagation losses. Nonetheless, because of: (i) directional transmission paving way for beamforming to recompense for the path attenuation, and (ii) sophisticated placement concreteness of the base stations (BS) is the best alternative for array wireless communications in mmWave bands (that is to say 100-150 m). The advance in technology and innovation of unmanned aerial vehicles (UAVs) necessitates many opportunities and uncertainties. UAVs are agile and can fly all complexities if the terrains making ground robots unsuitable. The UAV may be managed either independently through aboard computers or distant controlled of a flight attendant on pulverized wireless communication links in our case 5G. Although a fast algorithm solved the problematic aspect of beam selection for 2-dimensional scenarios. This paper presents 3-dimensional scenarios for UAV. We modeled beam selection with environmental responsiveness in millimeter Wave UAV to accomplish close optimum assessments on the regular period through learning from the available situation.</p>
This study reveals that increases in the global population command an augmented demand for products and services that calls for more effective ways of using existing natural resources and materials. The recent development of information and communication technologies, which had a great impact on many areas, also had a damaging effect on the environment and human health. Therefore, societies are moving toward a greener future by reducing the consumption of nonrenewable materials, raw materials, and resources while at the same time decreasing energy pollution and consumption. Since information technology is considered a tool for solving ecological difficulties, the green Internet of things (G-IoT) is playing a vital role in creating a sustainable home. Extensive data analysis is required to obtain a valuable overview of the large and diverse data generated by the G-IoT. The gathered information will facilitate forecasting, decision-making, and other activities related to smart urban services and then contribute to the incessant development of G-IoT technology. Therefore, even if sustainable and smart cities become an actuality, the G-IoT approach and the knowledge gained through big data (BD) analysis will make cities more sustainable, safer, and smarter. The goal of this article is to combine innovation in technological development with the main focus on resource sharing in creating cities that improve the quality of life while reducing pollution and realizing more efficient use of the raw materials. In the practice of big data science, it is always of interest to provide the best description of the data under consideration. Recent studies have pointed out the applicability of the statistical distributions in modeling data in applied sciences. In this article, we introduce a new family of statistical models to provide the best description of the life span of the wireless sensors network’s data. Based on the proposed approach, a special submodel called new exponent power-Weibull distribution is studied in detail. The applicability of the proposed model is shown by analyzing the life span of the wireless sensors network’s data.
The unmanned aerial vehicles (UAVs) emerged into a promising research trend within the recurrent year where current and future networks are to use enhanced connectivity in these digital immigrations in different fields like medical, communication, and search and rescue operations among others. The current technologies are using fixed base stations to operate onsite and off-site in the fixed position with its associated problems like poor connectivity. This open gate for the UAV technology is to be used as a mobile alternative to increase accessibility with fifth-generation (5G) connectivity that focuses on increased availability and connectivity. There has been less usage of wireless technologies in the medical field. This paper first presents a study on deep learning to medical field application in general and provides detailed steps that are involved in the multiarmed bandit (MAB) approach in solving the UAV biomedical engineering technology device and medical exploration to exploitation dilemma. The paper further presents a detailed description of the bandit network applicability to achieve close optimal performance and efficiency of medical engineered devices. The simulated results depicted that a multiarmed bandit problem approach can be applied in optimizing the performance of any medical networked device issue compared to the Thompson sampling, Bayesian algorithm, and ε-greedy algorithm. The results obtained further illustrated the optimized utilization of biomedical engineering technology systems achieving thus close optimal performance on the average period through deep learning of realistic medical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.