Abstract. Gender classification based on speech signal is an important task in variant fields such as content-based multimedia. In this paper we propose a novel and efficient method for gender classification based on neural network. In our work pitch feature of voice is used for classification between males and females. Our method is based on an MLP neural network. About 96 % of classification accuracy is obtained for 1 second speech segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.