Bacterial wilt (BW) caused by Ralstonia solanacearum is responsible for substantial losses in cultivated potato (Solanum tuberosum) crops worldwide. Resistance genes have been identified in wild species; however, introduction of these through classical breeding has achieved only partial resistance, which has been linked to poor agronomic performance. The Arabidopsis thaliana (At) pattern recognition receptor elongation factor-Tu (EF-Tu) receptor (EFR) recognizes the bacterial pathogen-associated molecular pattern EF-Tu (and its derived peptide elf18) to confer anti-bacterial immunity. Previous work has shown that transfer of AtEFR into tomato confers increased resistance to R. solanacearum. Here, we evaluated whether the transgenic expression of AtEFR would similarly increase BW resistance in a commercial potato line (INIA Iporá), as well as in a breeding potato line (09509.6) in which quantitative resistance has been introgressed from the wild potato relative Solanum commersonii. Resistance to R. solanacearum was evaluated by damaged root inoculation under controlled conditions. Both INIA Iporá and 09509.6 potato lines expressing AtEFR showed greater resistance to R. solanacearum, with no detectable bacteria in tubers evaluated by multiplex-PCR and plate counting. Notably, AtEFR expression and the introgression of quantitative resistance from S. commersonii had a significant additive effect in 09509.6-AtEFR lines. These results show that the combination of heterologous expression of AtEFR with quantitative resistance introgressed from wild relatives is a promising strategy to develop BW resistance in potato.
Here, we report a new draft genome sequence of an isolate of the ascomycete Claviceps paspali that is responsible for ergot disease in grasses of the Paspalum genus. This new draft genome sequence will provide useful data for evaluating intraspecies and interspecies genome variation in C. paspali and other Claviceps genus members.
Background The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. Results C. paspali isolates had compact genomes and secretome which accounted for 4.6–4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. Conclusions Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.
Red-banded stink bug Piezodorus guildinii (P. guildinii) has been described as the most damaging stink bug regarding soybean crops, leading to seed injury, low germination percentages, and foliar retention, at low population densities. In recent years, RNA interference (RNAi), a conserved eukaryote silencing mechanism has been explored to develop species-selective pesticides. In this work, we evaluated RNAi in P. guildinii to develop new pest-control strategies. For this, we assembled and annotated a P. guildinii transcriptome from a pool of all developmental stages. Analysis of this transcriptome led to the identification of 56 genes related to the silencing process encompassing siRNA, miRNA, and piRNA pathways. To evaluate the functionality of RNAi machinery, P. guildinii adults were injected with 28 ng/mg of body weight of double stranded RNA (dsRNA) targeting vATPase A. A mortality of 35 and 51.6% was observed after 7 and 14 days, respectively, and a downregulation of vATPase A gene of 84% 72 h post-injection. In addition, Dicer-2 and Argonaute-2 genes, core RNAi proteins, were upregulated 1.8-fold 48 h after injection. These findings showed for the first time that RNAi is functional in P. guildinii and the silencing of essential genes has a significant effect in adult viability. Taken together, the work reported here shows that RNAi could be an interesting approach for the development of red-banded stink bug control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.