A spatio-temporal framework for estimating trial-to-trial variability in evoked response data is presented. Spatial and temporal bases capture the aspects of the response that are consistent across trials, while the basis expansion coefficients represent the variable components of the response. We focus on the simplest case of constant spatio-temporal response shape and varying amplitude across trials. Two different constraints on the amplitude evolution are employed to effectively integrate the individual responses and improve robustness at low SNR. The linear dynamical system response (LDSR) constraint estimates the current trial amplitude as an unknown constant scaling of the estimate in the previous trial plus zero-mean Gaussian noise with unknown variance. The independent response (IR) constraint estimates response amplitudes across trials as independent Gaussian random variables having unknown mean and variance. We develop a generalized expectation-maximization algorithm to obtain the maximum likelihood estimates of the signal waveform, noise covariance matrix, and unknown constraint parameters. Maximum likelihood source localization is achieved by scanning the likelihood over different sets of spatial bases. We demonstrate the variability estimation and source localization effectiveness of the proposed algorithms using both real and simulated evoked response data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.