In vielen Industriebereichen ist der Schutz von nicht-metallischen Substraten, wie z. B. Kunststoff, Holz und Beton, durch die aufgebrachten Beschichtungssysteme entscheidend. Nur wenn die richtigen Schichtdicken aufgetragen sind, existiert ein optimaler Schutz der Substrate. Zur Sicherstellung der exakten Schichtdicken und zur Defekterkennung werden zerstörungsfreie Messtechniken eingesetzt, wobei berührungslose Terahertz-basierende Messprinzipien ein hohes Anwendungspotenzial versprechen. Elektromagnetische Wellen mit Wellenlängen von 50 bis 3000 μm durchdringen elektrisch nicht leitfähige Beschichtungen und ermöglichen vielfältige Analysemethoden aufgrund der charakteristischen komplexen Brechungsindizes im Terahertz-Frequenzspektrum. Schichtdickenmessungen wurden für faserverstärkte Kunststoffe mit elektromagnetischen Pikosekunden-Impulsen erforscht. Die spektralen Materialeigenschaften berücksichtigend stellen wir Algorithmen zur Schichtdickenbestimmung in Mehrlagen-Systemen vor. Protection of non-metallic substrates like plastics, wood and concrete, by means of superimposed coating systems is crucial in numerous industrial sectors. Only the correct coating thickness ensures optimum protection of the substrate. To guarantee this correct coating thickness, non-destructive measurement techniques are needed in which non-tactile terahertz-based principles offer a high application potential. Electromagnetic waves with wavelengths between 50 and 3000 μm penetrate electrically non-conductive coatings and offer a variety of analytical methods based on the characteristic complex refractive indices in the terahertz frequency spectrum. Coating materials for fibre-reinforced plastics are investigated with electromagnetic picosecond pulses. We present algorithms for the determination of thicknesses in multilayer systems taking into account these spectral material properties
Terahertz waves penetrate nonconductive coatings and are reflected at the boundary layers between different refraction indices. This creates new potential for quality control when added to established nondestructive testing techniques such as ultrasonic or x-ray
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.