In this letter, neural networks (NNs) classify alcoholics and nonalcoholics using features extracted from visual evoked potential (VEP). A genetic algorithm (GA) is used to select the minimum number of channels that maximize classification performance. GA population fitness is evaluated using fuzzy ARTMAP (FA) NN, instead of the widely used multilayer perceptron (MLP). MLP, despite its effective classification, requires long training time (on the order of 10(3) times compared to FA). This causes it to be unsuitable to be used with GA, especially for on-line training. It is shown empirically that the optimal channel configuration selected by the proposed method is unbiased, i.e., it is optimal not only for FA but also for MLP classification. Therefore, it is proposed that for future experiments, these optimal channels could be considered for applications that involve classification of alcoholics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.